金融数据分析·时间序列·相关性和平稳性

第二章 金融时间序列线性模型

        时间序列是指将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而成的序列。时间序列的发展可以追溯到1927年Yule提出的AR模型和1937年Walker提出的MA模型及将两个模型合并得到的ARMA模型;随后标志性的事件包括1970年Box和Jenkins中提出的ARIMA模型, 1982年Engle提出的ARCH模型, 1985年Bollerslov针对多变量的情况提出的GARCH模型。

1、相关性

1.1 皮尔逊(Pearson)相关系数(通常简称为相关系数)衡量两个变量间的线性相关关系。

但金融指标,特别是各种金融资产收益率的相关性,远非线性相关性这么简单,往往表现出很强的非线性关系。

1.2 斯皮尔曼(Spearman)ρ_s是基于随机变量秩的相关系数,因此通常也被称为Spearman秩相关系数。斯皮尔曼相关系数可看作是Pearson相关系数衍生出的一种度量方法,该方法基于秩的理论,不需要假设变量之间是线性关系,也不是对原始数据直接进行计算,而是将原始数据的秩作为变量计算Spearman相关系数。

1.3 Kendall相关系数τ,又称Kendall秩相关系数,它也是一种秩相关系数。Kendall相关系数τ反映了一致数对和非一致数对的关系。

相关性python代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值