第二章 金融时间序列线性模型
时间序列是指将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而成的序列。时间序列的发展可以追溯到1927年Yule提出的AR模型和1937年Walker提出的MA模型及将两个模型合并得到的ARMA模型;随后标志性的事件包括1970年Box和Jenkins中提出的ARIMA模型, 1982年Engle提出的ARCH模型, 1985年Bollerslov针对多变量的情况提出的GARCH模型。
1、相关性
1.1 皮尔逊(Pearson)相关系数(通常简称为相关系数)衡量两个变量间的线性相关关系。
但金融指标,特别是各种金融资产收益率的相关性,远非线性相关性这么简单,往往表现出很强的非线性关系。
1.2 斯皮尔曼(Spearman)ρ_s是基于随机变量秩的相关系数,因此通常也被称为Spearman秩相关系数。斯皮尔曼相关系数可看作是Pearson相关系数衍生出的一种度量方法,该方法基于秩的理论,不需要假设变量之间是线性关系,也不是对原始数据直接进行计算,而是将原始数据的秩作为变量计算Spearman相关系数。
1.3 Kendall相关系数τ,又称Kendall秩相关系数,它也是一种秩相关系数。Kendall相关系数τ反映了一致数对和非一致数对的关系。
相关性python代码