金融数据分析·时间序列·ARIMA模型(附案例及代码)

第二章 金融时间序列线性模型

        时间序列是指将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而成的序列。时间序列的发展可以追溯到1927年Yule提出的AR模型和1937年Walker提出的MA模型及将两个模型合并得到的ARMA模型;随后标志性的事件包括1970年Box和Jenkins中提出的ARIMA模型,1982年Engle提出的ARCH模型,1985年Bollerslov针对多变量的情况提出的GARCH模型。

        ARIMA(p,d,q)模型,全称为自回归差分移动平均模型,是一种广泛使用的统计方法,用于分析时间序列数据并预测未来值。ARIMA 模型用于对时间序列数据中的趋势、季节性和噪声(随机波动)进行建模。

        适用于非季节性的数据,它结合了自回归(AR)、差分(I)和移动平均(MA)三个部分,通过模型参数的拟合来预测未来的数据点。

  • AR(自回归):在时间序列数据中回归自己的滞后值,这是由在模型中的p值表示自回归的数量。换句话说,AR模型是使用过去时间的观测值的线性组合来预测当前/未来时间值。

  • I(差分):差分通过获取数据序列的差异使数据平稳。这使数据序列的趋势平稳,并使模型更适合建模。简单来说,差分就是计算相邻时间点上的数据差异。通过差分,我们可以消除趋势和季节性变化,使得数据更容易被模型捕捉和预测。这由模型中的“d”值表示。例如,d = 1,则查看两个时间序列条目之间的差分,如果d = 2,则查看在d = 1处获得的差分的差分。

  • MA(移动平均):MA模型使用过去时间的误差项的线性组合来估计当前时间的值。MA 的阶数q决定了过去误差项的回溯程度。

AR和MA模型的模型概念、公式、特征在本专栏其他章节已经详细展开,不再赘述。

ARIMA建模案例及Python代码

        我们选择1995年1月至2021年12月期间中国CPI月度数据进行分析&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值