第二章 金融时间序列线性模型
时间序列是指将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而成的序列。时间序列的发展可以追溯到1927年Yule提出的AR模型和1937年Walker提出的MA模型及将两个模型合并得到的ARMA模型;随后标志性的事件包括1970年Box和Jenkins中提出的ARIMA模型,1982年Engle提出的ARCH模型,1985年Bollerslov针对多变量的情况提出的GARCH模型。
1、AR(Autoregressive model,AR)模型,自回归模型
1.1 AR(1)模型
自回归模型就是变量对变量自身滞后项进行回归。当x_t具有统计显著的滞后为1的自相关系数时,滞后值x_t−1可能会在预测x_t时有用。
上述模型称为一阶自回归模型(Autoregressive model,AR),或简称AR(1)模型。其中{a_t}是均值为0、方差为σ_a^2的白噪声序列。AR(1)模型有若干类似于简单线性回归模型的性质。假定序列{x_t}是弱平稳的,则有:
其中μ和γ_0是常数,γ_j是j的函数而与t无关。
即,AR(1)模型性质(总结):