- 博客(6)
- 收藏
- 关注
原创 CSI-Based Location-Independent Human ActivityRecognition Using Feature Fusion(2022)
为了提高基于 WiFi 的 HAR 的位置泛化能力,提出了一种基于注意力的特征融合位置无关的活动识别系统 AF-ACT,它不仅提取 CSI 活动数据的语义活动特征,而且还提取时间特征。BGRU 提取的时间特征是自注意力块的输入,自注意力块能够自动关注重要的特征和时间步,并为每个特征和时间步分配权重。只使用CSI幅度,CSI数据输入到两个网络中提取语义活动特征和时间特征,CSI数据的维度需要调整为T×C×K和T×K‘,其中T是数据包的数量,K为天线对,C为一对天线的所有子载波,K‘= K × C。
2024-05-05 20:58:33 967 2
原创 Big AI Models for 6G Wireless Networks:Opportunities, Challenges, and Research Directions
作为一种新兴的机器学习范式,大人工智能模型(BAIM)也称为基础模型,正在给包括自然语言处理(NLP)在内的各个领域带来革命性的变化。凭借强大的模型、巨大的参数规模、丰富的数据和海量计算资源,BAIM 从预训练中获得了前所未有的泛化性和广泛适应性的智能。只需一个预训练的 BAIM 就可以适应各种下游应用,并通过微调、小样本甚至零样本学习来实现最先进的性能。图1给出了BAIM技术的一般工作流程和流行算法。
2024-05-03 11:45:36 1685
原创 文献阅读--Wifi Sensing之RF-vision
射频视觉(RF-vision)在低复杂性(因此可以实时响应)、能源效率和易于部署性 [8, 29]。这些优势促使人们使用 RF 视觉来解决 OV 之前解决的问题。RF-vision 的最大优势之一,即遮挡鲁棒性,仅被 RF-Pose轻微触及,因为粗粒度人体姿态估计仅在 LoS 域中训练并直接用于遮挡场景,而不考虑造成遮挡的障碍物的影响。文中重点利用RF视觉来对遮挡场景执行细粒度3D手势估计。利用精心设计的跨模态框架,我们展示了 OCHID-Fi 以非欧几里得方式将射频信号映射到手部关键点的能力。
2023-12-16 19:42:33 187 1
原创 文献阅读:WiFi Sensing with Channel State Information: A Survey(2019)
在提取CSI时也要消除各种误差的影响,例如循环移位分集 (CSD) 的时间延迟,采样时间偏移(STO),采样频率偏移(SFO),波束形成矩阵的幅度衰减和相移。是解决这一问题的有效且广泛使用的架构。具有 LSTM 的 RNN 通常是处理时间顺序很重要的数据点序列或时间序列的正确选择。原始 CSI 可以通过降维技术(例如主成分/独立成分分析 (PCA/ICA)、奇异值分解 (SVD) 等)或自相关/互相关、欧氏距离、分布函数等度量进行压缩,还可以从不同域中的原始 CSI 测量中删除冗余和不相关的信息。
2023-11-05 20:24:24 328
原创 from CSI to DFS
创建全零矩阵存放dopper_spectrum,[6 121 T],6个天线,频率范围从-60到60,T是数据包个数,即持续时间。长窗口提供良好的频率分辨率但较差的时间分辨率,可以很容易地识别频率分量,但无法定位频率变化的时间。然而,较短的窗口长度允许检测信号何时发生变化,但不能精确识别输入信号的频率。离散小波变换(DWT):小波变换为低频信号提供良好的频率分辨率,为高频信号提供良好的时间分辨率。%滤波器的操作不太明白,滤除特定频率的成分,保留-60HZ~60HZ的频率范围?
2023-11-05 16:30:24 229
原创 csi信号处理方法
由硬件内部不完善的模拟域滤波器实现引起的,使得提取的CSI幅度和相位被非线性函数等效地处理。在OFDM调制过程中,各个子载波应具有相同的增益。但实际测量表明,即使没有多径无线信道,仍然存在类似的“频率选择性衰落”特性,即各个频段的增益不同,呈现M形幅频特性曲线。同样,当使用同轴电缆连接收发端口时,NIC获得的CSI相频特性也不是一条带有斜率的理想直线,而是一条具有一定非线性的S形曲线。在复现widar3.0的过程中,一个是CSI process的细节,二是Location和Oriention的具体实现。
2023-11-05 15:49:02 662
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人