文献阅读:WiFi Sensing with Channel State Information: A Survey(2019)

1、摘要

该调查将基于 CSI 的 WiFi 传感应用分为三类:检测、识别和估计,具体取决于输出是二元/多类分类还是数值。强调了 WiFi 传感面临的三大挑战:稳健性和通用性、隐私和安全性以及 WiFi 传感和网络的共存。

2、Introduction

MIMO与正交频分复用OFDM一起为wifi的成功做出贡献,MIMO 为每个载波频率上的每个发射和接收天线对提供信道状态信息 (CSI)。

对于采用 MIMO-OFDM 的 WiFi 系统,CSI 是表示多径 WiFi 信道的幅度衰减和相移的复数值的三维 (3D) 矩阵。 CSI 测量的时间序列捕获无线信号如何在时域、频域和空间域中穿过周围物体和人体,因此可用于不同的无线传感应用。

  • 时域中的CSI幅度变化对于不同的人、活动、手势等具有不同的模式,可用于人体存在检测
  • 空间和频域(即发射/接收天线和载波频率)中的CSI相移与信号传输延迟和方向有关,可用于人体定位和跟踪
  • 时域中的 CSI 相移可能具有不同的主频率分量,可用于估计呼吸速率

wifi感知的基本原理就是:CSI捕获附近环境的无线特征,这些特征可在机器学习或物理建模的辅助下用于不同的感知应用。

3、背景和相关工作

4D CSI 张量是 MIMO-OFDM 信道的 CSI 矩阵的时间序列。它捕获空间、频率和时域中的多径信道变化,包括幅度衰减和相移。在提取CSI时也要消除各种误差的影响,例如循环移位分集 (CSD) 的时间延迟,采样时间偏移(STO),采样频率偏移(SFO),波束形成矩阵的幅度衰减和相移。CSI矩阵的时间序列表征不同域的MIMO信道变化。

对于具有 M 个发射天线、N 个接收天线和 K 个子载波的 MIMO-OFDM 信道,CSI 矩阵是一个 3D 矩阵 H ∈ CN ×M×K 表示多径信道的幅度衰减和相移。 CSI 提供的信息比接收信号强度指示器 (RSSI) 更多。 3D CSI 矩阵类似于具有 N × M 空间分辨率和 K 颜色通道的数字图像,因此基于 CSI 的 WiFi 传感可以重用为计算机视觉任务设计的信号处理技术和算法。 4D CSI 张量提供时域中的附加信息。 CSI 可以在不同领域进行处理、建模和训练,以实现不同的 WiFi 传感目的,例如检测、识别和估计。不同软件平台提供的分辨率不同,5300NIC每队天线30个subcarrier,Atheros则是56个和114个子载波(分别是20MHZ和40MHZ带宽运行)。

3、信号处理

3.1 去噪

相位偏移(phase offsets):通过相位差除去相位偏移,例如采样时间/频率偏移、载波频率偏移、跨设备同步误差、数据包检测延迟等。

相位偏移会引入到达角 (AoA) 和飞行时间 (ToF) 的估计误差,这些误差用于跟踪和定位人类和物体。相位偏移消除还可以提高二元和多类分类应用的性能。它恢复子载波和采样时间上的 CSI 相位模式。原始测量的 CSI 相位提供有关 CSI 相位如何变化的冗余信息。相位偏移消除可解开 CSI 相位并恢复丢失的信息。

异常值去除:通过移动平均、中值滤波器、低通滤波器、小波滤波器等

移动平均和中值滤波器是消除高频噪声的简单且广泛使用的方法。每个数据点都替换为相邻数据点的平均值或中值。通常使用滑动窗口和乘法因子来给出不同的权重,例如加权移动平均线(WMA)和指数加权移动平均线(EWMA)。低通滤波器 (LPF) 还可以通过信号变换方法(例如快速傅立叶变换 (FFT))去除高频噪声。小波滤波器与 LPF 类似;主要区别在于它使用离散小波变换 (DWT) 而不是 FFT。

3.2 信号转换

用于csi测量时间序列的时频分析。

FFT 广泛用于查找不同的主频率,并且可以与 LPF 结合使用以消除高频噪声。它还可以通过带通滤波器(BPF)获取特定频率的目标信号。

STFT 无法同时保证良好的频率分辨率和时间分辨率。长窗口长度提供良好的频率分辨率,但时间分辨率较差。可以很容易地识别频率分量,但无法定位频率变化的时间。然而,较短的窗口长度允许检测信号何时变化,但无法精确识别输入信号的频率。小波变换为低频信号提供良好的频率分辨率,为高频信号提供良好的时间分辨率。 DWT 的输出可以馈送到小波滤波器以消除噪声。 DWT 保留了不同场景下的移动性信息,并且比多普勒相移更稳健

3.3 信号提取

高、低和带通滤波器广泛用于提取具有某些主频率的信号。用于滤波的输入信号通常来自FFT、DHT或STFT。巴特沃斯通滤波器因其在通带和阻带中的单调幅度响应以及在截止频率附近的快速滚降而被广泛使用。高通滤波器(HPF)可用于滤除来自具有相对稳定信号反射的静态物体的信号。

在时域中,阈值处理可用于提取具有特定功率水平、AoA、ToF 等的信号。无设备人体跟踪可以通过切断具有最短ToF的信号来排除直接路径的信号。不同路径的ToF可以通过功率延迟曲线(PDP)计算。基于wifi的手势识别时就可以通过使用阈值来排除未做出手势时的信号。

3.4 信号压缩

原始 CSI 可以通过降维技术(例如主成分/独立成分分析 (PCA/ICA)、奇异值分解 (SVD) 等)或自相关/互相关、欧氏距离、分布函数等度量进行压缩,还可以从不同域中的原始 CSI 测量中删除冗余和不相关的信息。

PCA和ICA广泛用于特征提取和盲信号分离。 PCA 使用正交变换将矩阵转换为一组主成分。假设输入是一组可能相关的变量,主成分是一组线性不相关的变量。 PCA 可以通过输入的协方差或相关矩阵的 SVD 或特征值分解来完成。 ICA 假设输入信号是统计上独立的非高斯分量的混合。它通过最小化互信息或最大化非高斯性(即峰度)来最大化统计独立性。许多 PCA/ICA 组件可以被丢弃。对于 CSI 矩阵的时间序列,如果相邻样本高度相关,则可以删除冗余测量。

4 wifi sense算法(省略基于物理模型的算法)

4.1 learning-basd 

二元和多类分类应用通常使用基于学习的算法。这些算法尝试使用 CSI 测量的训练样本和相应的真实标签来学习映射函数。

1、浅层学习算法(与基于阈值的方法类似):决策树(DT)、朴素贝叶斯(Naive Bayes)、隐马尔可夫模型(HMM)

基于实例的算法(广泛用于检测和识别应用。这些算法计算每个测试样本和每个训练样本之间的距离):k 最近邻 (kNN)、支持向量机 (SVM) 和自组织映射 (SOM)

浅层学习算法的输入可以是原始 CSI、预处理的 CSI 或特征向量。

  • 原始 CSI 通常太大且噪声较大,很少用作输入。
  • 预处理的CSI:可以是经过FFT、STFT、DWT等信号变换后的CSI的滤波分量。阈值处理和子载波选择的输出也可以是学习算法的输入。预处理有助于消除噪声并减小输入大小。预处理的 CSI 仍然太大且噪音太大。
  • 特征工程有助于从原始或预处理的 CSI 中提取有意义的压缩信息,例如领域知识。它广泛用于kNN和SVM等浅层学习算法。统计指标是常用的特征,也可以使用PCA、ICA、SVD等降维技术来提取特征向量。特征提取和选择通常对浅层学习算法的性能有很大影响。

2、深度学习算法

CNN:学习局部特征非常有效。对于数据样本的序列或时间序列,通常最好使用一维 CNN 或循环神经网络 (RNN)。一维 CNN 使用一维而不是二维卷积,因此计算成本较低,对于简单的分类问题性能良好。 CNN 的一个主要特征是缺乏对数据点序列或时间序列的记忆。

RNN:通过迭代输入元素的时间序列来建立内部连接。简单的 RNN 存在梯度消失问题,即随着新层添加到网络中,网络变得无法训练 [12]。长短期记忆(LSTM)是解决这一问题的有效且广泛使用的架构。它为后面的单元保存状态信息,从而防止先前的状态在训练过程中逐渐消失。具有 LSTM 的 RNN 通常是处理时间顺序很重要的数据点序列或时间序列的正确选择。 RNN 和 LSTM 的主要缺点是它们的计算成本非常高。

大小 (H) = N × M × K 的 3D CSI 矩阵类似于具有 N × M 空间分辨率和 K 个颜色通道的数字图像,因此 WiFi 传感可以重用具有高性能的 DNN用于CV任务。

3、混合算法

对于估计应用,可以首先使用基于学习的算法来检测或识别某些事件,然后使用基于建模的算法来估计目标事件的数量值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值