- 博客(9)
- 收藏
- 关注
原创 MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution
2021-11-15 16:54:31 635 1
原创 Graph Convolutional Networks for HyperspectralImage Classification
代码:https://github.com/danfenghong/IEEE_TGRS_GCNhttps://github.com/danfenghong/IEEE_TGRS_GCNminiGCN相较于之前GCN的优势:GCN要一次性输入全部特征信息,计算量大、梯度下降慢,而miniGCN可以采用小样本采样。GCN和CNN比较:1)CNN输入是块输入,GCN输入是像素和代表像素点关系的邻接矩阵2)CNN可以小样本训练,GCN必须全部样本都输入进去过程:用采样...
2021-11-14 14:15:34 1439
原创 Scalable Convolutional Neural Network for Image Compressed Sensing
达到粗粒度重建+细粒度重建卷积-reshape-cat思考总结:1)EL的重建图像参考了下一层的图像,可以提高重构图像的质量。2)引入了贪心算法,指标是峰值信噪比,选择最好的measurements,去掉多余的measurements和网络,这样采样率(也就是那个卷积核)可以灵活改变,因为模型可以通过贪心算法来调整采样率。...
2021-11-13 20:11:05 563 2
原创 DAN: Deep-Attention Network for 3D Shape Recognition
代码:https://github.com/RiDang/DANNhttps://github.com/RiDang/DANN结构:思考总结:1)自注意力可获取视图之间的相关性,公式下面除以一个dk是为了防止注意力分数过大2)将当前层的输入添加到输出特征向量中,作为下一个自关注层的输入,充分利用上一层挖掘出的多个视图之间的低层相关性信息。3)最大池化后得到的特征向量包含多个视图的信息,有效信息都集中在一个视图上,信息丰富。...
2021-11-13 15:01:50 570
原创 Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution
代码:GitHub - danfenghong/ECCV2020_CUCaNet: Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution, ECCV, 2020. (PyTorch)https://github.com/danfenghong/ECCV2020_CUCaNet模型数学支撑:基本假设:X图像来自于Z图像的空间退化(Spatial Degradation..
2021-11-13 13:08:18 2810 1
原创 CS和MRA算法
CS(component substitution,成分替换)将MS分为空间分量和光谱分量,用PAN图像替换空间分量来增强变换的MS图像。PAN图像和被替换的分量之间的相关性越大,这种融合方法引入的失真越低。在替换发生之前,执行PAN图像与所选分量的直方图匹配。因此,直方图匹配的PAN将表现出与要替换的分量相同的均值和方差。最后,通过逆变换将数据带回原始空间,从而完成泛锐化过程。步骤:①插值MS图像匹配pan图像尺度②计算强度成分③直方图匹配PAN图像和强度成分④注入空间细节
2021-10-30 16:58:56 1361
原创 论文笔记1
论文:Deep_Residual_Learning_for_Boosting_the_Accuracy_of_Hyperspectral_Pansharpening解决问题:由于高光谱图像的宽频谱和低空间分辨率,深度学习不能很好的用到高光谱图像融合。研究内容:通过对比度有限直方图均衡(CLAHE算法)增强图像边缘细节,再通过引导滤波得到初始图像,再通过残差卷积神经网络计算初始图像和参考图像的残差,残差图像+初始图像得到融合图像。CLAHE:DRCNN(深度残差..
2021-10-17 11:11:51 810
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人