Graph Convolutional Networks for HyperspectralImage Classification

代码:https://github.com/danfenghong/IEEE_TGRS_GCNhttps://github.com/danfenghong/IEEE_TGRS_GCN

miniGCN

相较于之前GCN的优势:GCN要一次性输入全部特征信息,计算量大、梯度下降慢,而miniGCN可以采用小样本采样。

GCN和CNN比较:

1)CNN输入是块输入,GCN输入是像素和代表像素点关系的邻接矩阵 

2)CNN可以小样本训练,GCN必须全部样本都输入进去

过程:

用采样器小样本采样,把图分为多个子图,分别计算每个样本Node的特征,然后再把所有的H相加得到全局的节点特征信息。

 

 

融合:CNN和Mini GNN融合获得空间光谱信息、和基于图拓谱结构的复杂结构信息。

三种融合策略:

 优点:

 图结构对图像的信息是一种补充;Mini GCN多样本训练解决了传统GCN全样本训练带来的训练复杂度和梯度爆炸或者消失问题。同时GCN和CNN结合是得到的信息比较全面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CCRJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值