树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
给你一棵包含 n 个节点的树,标记为 0 到 n - 1 。给定数字 n 和一个有 n - 1 条无向边的 edges 列表(每一个边都是一对标签),其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条无向边。
可选择树中任何一个节点作为根。当选择节点 x 作为根节点时,设结果树的高度为 h 。在所有可能的树中,具有最小高度的树(即,min(h))被称为 最小高度树 。
请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。
树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。
示例 1:
输入:n = 4, edges = [[1,0],[1,2],[1,3]]
输出:[1]
解释:如图所示,当根是标签为 1 的节点时,树的高度是 1 ,这是唯一的最小高度树。
示例 2:
输入:n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]]
输出:[3,4]
提示:
1 <= n <= 2 * 104
edges.length == n - 1
0 <= ai, bi < n
ai != bi
所有 (ai, bi) 互不相同
给定的输入 保证 是一棵树,并且 不会有重复的边
思路:
(1)题目给出n个节点,以及一个包含所有边关系的列表edges,让我们选择任意一个节点作为根,求所有使树高度最小的根节点列表。
(2)树的高度是根节点和叶子节点之间最长的路径上面边的数量。因此我们可以用广度优先搜索遍历树上的所有节点,找到树中的最长路径,然后最小高度树的根节点一定在这条路径上。
(3)我们用一个列表保存最长路径里的所有节点。如果最长路径的长度为奇数,那么最小高度树的根节点一定是路径最中间的那一个节点;如果最长路径的长度为偶数,那么最小高度树的根节点一定是路径最中间的两个节点。
Python代码如下:
class Solution(object):
def findMinHeightTrees(self, n, edges):
"""
:type n: int
:type edges: List[List[int]]
:rtype: List[int]
"""
if n ==1 :
return [0] #若只有一个节点,返回0
g = [[] for _ in range(n)] #创建一个包含n个空列表的列表个g,为图的邻接表
for x,y in edges:
g[x].append(y)
g[y].append(x) #遍历边的列表,构造邻接表
parents = [0]*n #标记每个节点的父节点,初始为0
def bfs(first): #广度优先算法
visited = [0] * n #标记数组,访问过的记为1
q = deque() #队列
q.append(first)#起始节点入队
visited[first]=1
while q:
x = q.popleft()
for y in g[x]:
if visited[y] == 0:
q.append(y)
visited[y] = 1
parents[y] = x
return x
x = bfs(0) #找到距离0节点最远的节点
y = bfs(x) #再找到离节点x最远的节点,这样x,y之间的路径就是图的最长路径
path=[] #记录y到x的路径
parents[x] = -1
while y != -1:
path.append(y)
y = parents[y]
m = len(path)
if m%2==1:
return [path[m//2]]
else:
return [path[m//2],path[m//2-1]]
!!代码借鉴LeetCode,其他解法努力中ing~