SqueezeNet 算法的介绍

SqueezeNet是一种轻量级的卷积神经网络,旨在在不显著降低精度的情况下提高运算速度。通过使用1x1卷积替换3x3卷积,减少通道数,以及将降采样后置,SqueezeNet大大减少了参数数量。Fire模块作为其核心组成部分,包含Squeeze和Expand两部分,有效地实现了模型压缩。尽管SqueezeNet减少了参数,但在嵌入式环境中可能牺牲了并行性,导致测试时间增加。
摘要由CSDN通过智能技术生成

学习视频:四分钟精通 SqueezeNet(思想,公式,代码)--计算机视觉系列 05【推荐】_哔哩哔哩_bilibili

从LeNet5到DenseNet,反应卷积网络的一个发展方向:提高精度。这里我们开始另外一个方向的介绍:在不大幅降低模型精度的前提下,最大程度的提高运算速度

提高运算所读有两个可以调整的方向:

  1. 减少可学习参数的数量;
  2. 减少整个网络的计算量。

这个方向带来的效果是非常明显的:

  1. 减少模型训练和测试时候的计算量,单个step的速度更快;
  2. 减小模型文件的大小,更利于模型的保存和传输;
  3. 可学习参数更少,网络占用的显存更小。

SqueezeNet正是诞生在这个环境下的一个精度的网络,它能够在ImageNet数据集上达到AlexNet[2]近似的效果,但是参数比AlexNet少50倍,结合他们的模型压缩技术 Deep Compression[3],模型文件可比AlexNet小510倍。


1. SqueezeNet 详解

1.1 SqueezeNet的压缩策略

SqueezeNet的模型压缩使用了3个策略:

  1. 将 3×3 卷积替换成 1×1 卷积:通过这一步,一个卷积操作的参数数量减少了9倍;
  2. 减少 3×3 卷积的通道数:一个 3×3 卷积的计算量是 3×3×M×N (其中 M , N 分别是输入Feature Map和输出Feature Map的通道数),作者任务这样一个计算量过于庞大,因此希望将 M , N 减小以减少参数数量;
  3. 将降采样后置:作者认为较大的Feature Map含有更多的信息,因此将降采样往分类层移动。注意这样的操作虽然会提升网络的精度,但是它有一个非常严重的缺点:即会增加网络的计算量。

1.2 Fire模块

SqueezeNet是由若干个Fire模块结合卷积网络中卷积层,降采样层,全连接等层组成的。一个Fire模块由Squeeze部分和Expand部分组成(注意区分和Momenta的SENet[4]的区别)。Squeeze部分是一组连续的 1×1 卷积组成,Expand部分则是由一组连续的 1×1 卷积和一组连续的 3×3 卷积cancatnate组成,因此 3×3 卷积需要使用same卷积,Fire模块的结构见图1。在Fire模块中,Squeeze部分 1×1 卷积的通道数记做 s1x1 ,Expand部分 1×1 卷积和 3×3 卷积的通道数分别记做 e1x1 和 e3x3 (论文图画的不好,不要错误的理解成卷积的层数)。在Fire模块中,作者建议 s1x1<e1x1+e3x3 ,这么做相当于在两个 3×3 卷积的中间加入了瓶颈层,作者的实验中的一个策略是 s1x1=e1x14=e3x34 。图1中 s1x1=3 , e1x1=e3x3=4 。

图1:SqueezeNet的Fire模块

下面代码片段是Keras实现的Fire模块,注意拼接Feature Map的时候使用的是Cancatnate操作,这样不必要求 e1x1=e3x3 。

def fire_model(x, s_1x1, e_1x1, e_3x3, fire_name):
    # squeeze part
    squeeze_x = Conv2D(kernel_size=(1,1),filters=s_1x1,padding='same',activation='relu',name=fire_name+'_s1')(x)
    # expand part
    expand_x_1 = Conv2D(kernel_size=(1,1),filters=e_1x1,padding='same',activation='relu',name=fire_name+'_e1')(squeeze_x)
    expand_x_3 = Conv2D(kernel_size=(3,3),filters=e_3x3,padding='same',activation='relu',name=fire_name+'_e3')(squeeze_x)
    expand = merge([expand_x_1, expand_x_3], mode='concat', concat_axis=3)
    return expand

图2是使用Keras自带的plot_model功能得到的Fire模块的可视图,其中 s1x1=e1x14=e3x34=16 。

图2:Keras可视化的SqueezeNet的Fire模块

1.3 SqueezeNet的网络架构

图3是SqueezeNet的几个实现,左侧是不加short-cut的SqueezeNet,中间是加了short-cut的,右侧是short-cut跨有不同Feature Map个数的卷积的。还有一些细节图3中并没有体现出来:

  1. 激活函数默认都使用ReLU;
  2. fire9之后接了一个rate为0.5的dropout;
  3. 使用same卷积。

图3:SqueezeNet网络结构

表1给出了SqueezeNet的详细参数:

表1:SqueezeNet网络参数

根据表1,我们的Keras实现如下面代码片段:

def squeezeNet(x):
    conv1 = Conv2D(input_shape = (224,224,3), strides = 2, filters=96, kernel_size=(7,7), padding='same', activation='relu')(x)
    poo1 = MaxPool2D((2,2))(conv1)
    fire2 = fire_model(poo1, 16, 64, 64,'fire2')
    fire3 = fire_model(fire2, 16, 64, 64,'fire3')
    fire4 = fire_model(fire3, 32, 128, 128,'fire4')
    pool2 = MaxPool2D((2,2))(fire4)
    fire5 = fire_model(pool2, 32, 128, 128,'fire5')
    fire6 = fire_model(fire5, 48, 192, 192,'fire6')
    fire7 = fire_model(fire6, 48, 192, 192,'fire7')
    fire8 = fire_model(fire7, 64, 256, 256,'fire8')
    pool3 = MaxPool2D((2,2))(fire8)
    fire9 = fire_model(pool3, 64, 256, 256,'fire9')
    dropout1 = Dropout(0.5)(fire9)
    conv10 = Conv2D(kernel_size=(1,1), filters=1000, padding='same', activation='relu')(dropout1)
    gap = GlobalAveragePooling2D()(conv10)
    return gap

上面的代码,模型的summary,以及SqueezeNet的keras可视化见:https://github.com/senliuy/CNN-Structures/blob/master/SqueezeNet.ipynb

1.4 SqueezeNet的性能以及Deep Compression

图3左侧的SqueezeNet的性能(top1:57.5%,top5:80.3%)是可以类似AlexNet的(top1:57.2%,top5:80.3%)。从表1中我们可以看出SqueezeNet总共有1,248,424个参数,同性能的AlexNet则有58,304,586个参数(主要集中在全连接层,去掉之后有3,729,472个)。使用他们提出的Deep Compression[3]算法压缩后,模型的参数数量可以降到421,098个。


2. 总结

SqueezeNet的压缩策略是依靠将 3×3 卷积替换成 1×1 卷积来达到的,其参数数量是等性能的AlexNet的2.14%。从参数数量上来看,SqueezeNet的目的达到了。SqueezeNet的最大贡献在于其开拓了模型压缩这一方向,之后的一系列文章也就此打开。

这里我们着重说一下SqueezeNet的缺点:

  1. SqueezeNet的侧重的应用方向是嵌入式环境,目前嵌入式环境主要问题是实时性。SqueezeNet的通过更深的深度置换更少的参数数量虽然能减少网络的参数,但是其丧失了网络的并行能力,测试时间反而会更长,这与目前的主要挑战是背道而驰的;
  2. 论文的题目非常标题党,虽然纸面上是减少了50倍的参数,但是问题的主要症结在于AlexNet本身全连接节点过于庞大,50倍参数的减少和SqueezeNet的设计并没有关系,考虑去掉全连接之后3倍参数的减少更为合适。
  3. SqueezeNet得到的模型是5MB左右,0.5MB的模型还要得益于Deep Compression。虽然Deep Compression也是这个团队的文章,但是将0.5这个数列在文章的题目中显然不是很合适。
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值