基于电商用户开展的用户行为分析

本文基于淘宝天猫的用户行为数据进行分析,旨在发现提升销售的策略。研究发现,用户从浏览到购买的转化率低,加购和收藏行为能显著提升转化率。此外,用户在周末和晚上活跃度较高,推荐机制不合理可能是转化率低的原因。建议优化推荐系统,引导用户加购,以及在晚间进行促销活动,以提高转化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析背景

中国电商行业逐渐转变到精细化运营的模式,随着数据基础平台以及数据库的完善,所收集到的数据更加完整,对于分析提供了强有力的支持,同时通过数据分析来为企业经营提供决策变得越来越重要,在此背景下,本次项目尝试基于淘宝天猫真实电商用户数据开展一定分析。

数据来源

本次项目数据集通过公开渠道获得,数据来源于阿里云天池竞赛平台,包含了淘宝天猫2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢),原始数据量级100万左右。

数据集-阿里云天池数据集-阿里云天池的文档介绍:## User Behavior Data from Taobao for Recommendation**1.概述**UserBehavior是阿里巴巴提供的一个淘宝用户行为数...https://tianchi.aliyun.com/dataset/dataDetail?dataId=649数据说明:

列名称 说明
UserID 用户ID
ItemID 商品ID
categoryID 商品所属类目ID
BehaviorType 包括(pv buy cart fav)
TimesTamp 行为发生的时间戳

其中BehaviorType(用户行为类型)共有四种,分别是

行为类型  说明
pv  商品详情页pv,等价于点击
buy 商品购买
cart 将商品加入购物车
fav 收藏商品

分析目的

本次项目从多个维度分析用户数据、行为数据、商品数据,发现能够提升销售量的建议。

分析思路

分析前提出如下疑问:

1、哪些商品是热搜商品?哪些是畅销商品?热搜商品是否是畅销商品?

2、用户各个行为类型的占比是多少?行为之间的转化率是怎样的?哪个环节流失比较严重?

3、工作日或周末,每天不同时间段对于用户行为的影响

4、使用RFM方法对用户进行分类

针对分析目的,采用多维度拆解分析方法对问题进行拆解,并在分析过程中使用漏斗模型、对比分析法、RFM模型分析法、假设检验分析方法对流程级业务指标中的问题进行分析。

分析思路见下图:

分析步骤

数据清洗:删除重复值

select UserID,ItemID,TimeStamp 
from userbehavior 
group by UserID,ItemID,TimeStamp 
having count(1)>1;

 结果:经验证,无重复值

数据清洗:缺失值处理

select count(UserID),count(ItemID),count(categoryID),count(TimeStamp) 
from userbehavior;

 结果:经验证,无缺失值

数据清洗:一致化处理

考虑到分析过程中需要用到日期数据,但原始数据中timestamp格式是时间戳,包含了日期和时间,因此要先对timestamp字段进行拆分,调整成日期和时间格式

新增日期和时间字段并更新字段内容

alter table userbehavior 
add Date varchar(20) not null, add Time varchar(10) not null;

UPDATE userbehavior set Date = FROM_UNIXTIME(TimeStamp,'%Y-%m-%d'),
Time = FROM_UNIXTIME(TimeStamp,'%H:%i:%s');

### 基于Hadoop的电商用户行为分析流程 在电子商务环境中,利用Hadoop处理大规模用户行为数据可以提供有价值的洞察。以下是基于Hadoop框架进行电商用户行为分析的一个典型流程图示例。 #### 数据收集 电商平台通过各种渠道(网站点击流、移动应用日志等)收集用户的交互记录。这些原始数据通常以结构化或半结构化的形式存在,并被传输到分布式文件系统中保存[^1]。 ```bash hdfs dfs -put /local/path/to/logfiles hdfs://namenode/user/logs/ ``` #### 日志预处理 使用MapReduce作业或其他ETL工具对采集的日志数据执行清洗、过滤和转换操作,去除噪声并提取有用的信息字段。此阶段可能涉及正则表达式匹配、时间戳解析等活动[^2]。 #### 用户画像构建 经过初步清理后的数据会被进一步加工用于创建详细的客户档案。这一步骤旨在识别不同类型的消费者群体及其偏好模式,从而支持个性化推荐和服务优化策略制定。具体实现方式可能是统计购买频率、浏览路径长度以及商品类别倾向度量等指标[^3]。 #### 行为序列挖掘 针对特定业务需求开展关联规则学习或者马尔可夫链建模等工作,探索顾客之间潜在联系及转化可能性。例如预测哪些促销活动最有可能促使某类目标人群完成下单动作;评估广告投放效果等等。 #### 结果可视化展示 最后,借助图表库如Apache Zeppelin绘制直观易懂的结果报告供决策层审阅参考。常见的图形有柱状图比较销售额变化趋势、饼图呈现市场份额分布状况还有桑基图追踪资金流向轨迹等. ```python import matplotlib.pyplot as plt plt.bar(x=categories, height=sales_amounts) plt.title('Sales Performance by Category') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值