题目描述
2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404
。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。
输入样例 1:
20 5
23654987725541023819
输出样例 1:
49877
输入样例 2:
10 3
2468001680
输出样例 2:
404
解题思路:
题目中已经指出L为长度不超过1000的数字,所以只能用字符串存储了,通过调用String的subString()方法,便可以很方便的截取指定长度了。
注意点:
1.截取时,不要漏掉字符串的最后一个字符,否则会有两个测试点超时
2.判断素数时,要把范围缩到所判断数的开方,否则会超时
java代码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
String str = scan.next();
boolean flag = true;
for(int i = 0,j = m;j <= n;i++,j++) {
long temp = Long.parseLong(str.substring(i, j));
if(isPrime(temp)) {
int len = (temp + "").length();
if(len < 4) {
for(int k = 0; k < m - len;k++)
System.out.print("0");
}
System.out.print(temp);
flag = false;
break;
}
}
if(flag) {
System.out.println("404");
}
}
public static boolean isPrime(long num) {
if(num < 2)
return false;
for(int i = 2; i <= Math.sqrt(num);i++) {
if(num % i == 0) {
return false;
}
}
return true;
}
}
PTA提交截图: