854. Floyd求最短路 Java代码

32 篇文章 1 订阅

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

算法思路:

dis[i][j]表示从i到j的距离,floyd在更新时,借助第三点k,取 min( dis[i][j] , dis[i][k] + dis[k][j]),即i到j的距离取决于选第k个点或不选第k个点时的最小值,而k由k-1决定,所以需要将k放到最外层。floyd时间复杂度为O(n^3).

dis的初始化时,自环为0,非自环都不可通,为某个最大值。但由于当存在负值时,不可达的两点间的距离也会发生变化,所以最后判断是否有通路时只要大于一个INF的相同数量级即可。

Java代码:

import java.io.*;

public class Main {
	static int n, m, k;
	static int N = 205;
	static final int INF = 0x3f3f3f3f;
	static int [][]dis = new int[N][N];
	
	public static void main(String[] args) throws IOException {
		BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
		String[] split = br.readLine().split(" ");
		n = Integer.parseInt(split[0]);
		m = Integer.parseInt(split[1]);
		k = Integer.parseInt(split[2]);
		
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= n; j++) 
				if(i == j)continue; // 自环初始为0
				else dis[i][j] = INF; // 初始时,除自环外任意两点都不通
		
		for(int i = 0; i < m; i++) {
			split = br.readLine().split(" ");
			int a = Integer.parseInt(split[0]);
			int b = Integer.parseInt(split[1]);
			int c = Integer.parseInt(split[2]);
			dis[a][b] = Math.min(dis[a][b], c); // 有重边时,选择最小的边
		}
		
		floyd();
		
		for(int i = 0; i < k; i++) {
			split = br.readLine().split(" ");
			int a = Integer.parseInt(split[0]);
			int b = Integer.parseInt(split[1]);
			if(dis[a][b] > INF / 2) System.out.println("impossible");  // 负权的存在且任意两点间都会更新,需要取同量级数
			else System.out.println(dis[a][b]);
		}
	}
	
	public static void floyd() {
		for(int k = 1; k <= n; k++) 
			for(int i = 1; i <= n; i++) 
				for(int j = 1; j<= n; j++)
					dis[i][j] = Math.min(dis[i][j], dis[i][k] + dis[k][j]);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值