输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
算法思路:
dis[i][j]表示从i到j的距离,floyd在更新时,借助第三点k,取 min( dis[i][j] , dis[i][k] + dis[k][j]),即i到j的距离取决于选第k个点或不选第k个点时的最小值,而k由k-1决定,所以需要将k放到最外层。floyd时间复杂度为O(n^3).
dis的初始化时,自环为0,非自环都不可通,为某个最大值。但由于当存在负值时,不可达的两点间的距离也会发生变化,所以最后判断是否有通路时只要大于一个INF的相同数量级即可。
Java代码:
import java.io.*;
public class Main {
static int n, m, k;
static int N = 205;
static final int INF = 0x3f3f3f3f;
static int [][]dis = new int[N][N];
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] split = br.readLine().split(" ");
n = Integer.parseInt(split[0]);
m = Integer.parseInt(split[1]);
k = Integer.parseInt(split[2]);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(i == j)continue; // 自环初始为0
else dis[i][j] = INF; // 初始时,除自环外任意两点都不通
for(int i = 0; i < m; i++) {
split = br.readLine().split(" ");
int a = Integer.parseInt(split[0]);
int b = Integer.parseInt(split[1]);
int c = Integer.parseInt(split[2]);
dis[a][b] = Math.min(dis[a][b], c); // 有重边时,选择最小的边
}
floyd();
for(int i = 0; i < k; i++) {
split = br.readLine().split(" ");
int a = Integer.parseInt(split[0]);
int b = Integer.parseInt(split[1]);
if(dis[a][b] > INF / 2) System.out.println("impossible"); // 负权的存在且任意两点间都会更新,需要取同量级数
else System.out.println(dis[a][b]);
}
}
public static void floyd() {
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j<= n; j++)
dis[i][j] = Math.min(dis[i][j], dis[i][k] + dis[k][j]);
}
}