halcon,blob,roi,形状匹配

这篇博客详细介绍了图像处理中的关键步骤,包括阈值分割、局部处理、形态学操作如膨胀和腐蚀,以及开闭运算在消除噪声和平滑边界上的应用。此外,还探讨了形状匹配过程,涉及ROI创建、模板模型构建和模板匹配算法。内容适合于计算机视觉和图像分析领域的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BLOB分析

在这里插入图片描述

分割图像

threshold(Image : Region : MinGray, MaxGray :)
最简单,最快,使用频率最高的方法。
如果目标与背景之间存在灰度差,则threshold首先被使用

binary_threshold(Image : Region : Method, LightDark : UsedThreshold)

黑白对比度足够,可直接使用。

/*自动全局分割*/
auto_threshold(Image : Regions : Sigma : )
dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )
mean_image(Image : ImageMean : MaskWidth, MaskHeight : )

局部分割,通常和均值滤波一起使用。一般由于背景不一,目标表现为比背景局部亮或者暗,使用局部分割。

形态学处理

膨胀:对边界点进行扩充,填充空洞,使边界向外部扩张的过程。

腐蚀:消除物体边界点,使边界向内部收缩的过程,把小于结构元素的物体去除掉.

膨胀与腐蚀的主要作用:

(1)消除噪声

(2)分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素

(3)寻找图像中明显的极大值或极小值区域

(4)求出图像的梯度

开运算:先腐蚀后膨胀的过程称为开运算,

作用:去除孤立的小点,毛刺,消除小物体,平滑较大物体边界,同时不改变其面积.(此处的不改变其面积是有条件的,即结构元素设置的必须要合理)

闭运算:先膨胀后腐蚀的过程是闭运算。

作用:填充物体内细小的空洞,连接临近物体,平滑边界,同时不改变其面积。(此处的不改变其面积是有条件的,即结构元素设置的必须要合理)

膨胀

structelemnt:结构元素(gen_circle,gen_rectangle1,gen_rectangle2,gen_ellipse这些生产的区域)、

dilation_circle(Region : RegionDilation : Radius : )
/*对一个圆形区域膨胀region::要进行膨胀操作的区域。RegionDilation—膨胀获得区域。Radius—圆形结构半径*/
dilation_golay(Region:RegionDilation : GolayElement, Iterations, Rotation:)
dilation_rectangle1(Region : RegionDilation : Width, Height :/*矩形结构元素的宽高*///矩形
dilation_seq(Region : RegionDilation : GolayElement, Iterations : )
dilation1(region,structelemnt:regiondilation:iterations迭代次数)
dilation2(region,structelement生成的结构元素:regiondilation:row,column设置参考点位置,一般为原点,iterations迭代次数即膨胀次数)

腐蚀

erosion1(Region, StructElement : RegionErosion : Iterations : )
/*
StructElement :生成结构元素
Iterations :迭代次数,腐蚀次数
*/
erosion2(Region, StructElement : RegionErosion : Row, Column, Iterations 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值