推断统计python化(参数估计,假设检验与 t检验)

本文详细介绍了参数估计的点估计与区间估计,讲解了如何利用样本数据进行区间估计,包括总体方差已知和未知的情况,并通过Python的stats模块展示了区间估计的实现。此外,文章还探讨了假设检验的概念,包括两类错误、显著性水平与p值,以及t检验的应用,如单样本、独立样本和配对样本t检验,并提供了实际案例分析。
摘要由CSDN通过智能技术生成

推断统计的工作主要包含两类:参数估计(Parameter Estimation)假设检验(Hypothesis)

1.参数估计

参数估计通常有点估计(Point Estimate)区间估计(Interval Estimation) 两种形式。

1.1 点估计

点估计是用一个具体的值来估计一个总体的未知参数,也叫定值估计。能直接告诉我们未知参数的估计值是多少。但是样本毕竟只是总体的一部分,捕捉的信息终究有局限。因此我们使用样本数据估计出的结果不可避免地回有一定的偏差。
相比于其它中心指标,一般使用样本均值去估计总体均值得到的结果更为准确。
点估计的方法之一是矩估计法(Moment Estimation)
一个变量X的k阶矩即是X的k次方的均值,数学表达式为 E ( X k ) \displaystyle E(X^k) E(Xk)。而总体矩就是我们所研究的变量的矩。样本矩就是总体矩的估计值。
如用一阶样本矩 x ‾ \displaystyle \overline {x} x 估计 总体一阶矩(均值)u:

u ^ = x ‾ = x 1 + x 2 + ⋯ + x n n \displaystyle \hat{u}= \overline{x}= \frac{x_1+x_2+\cdots+x_n}{n} u^=x=nx1+x2++xn

其中,x1,x2,…,xn是抽得的一组样本。
一般来说,样本容量n较大时才能保证矩估计结果的优良性。


1.2 区间估计

1.2.1 区间估计概述

区间估计考虑到了估计存在的误差,因而不是使用一个具体的值,而是使用两个数值所构成的区间来估计一个未知参数。这样估计结果包含真实值的概率增加了,但是缺点是没有直观的数值。

区间估计用一个区间范围来估计参数的取值范围,得打的结果为置信区间(Confidence Interval)。区间估计的可信度称为置信度置信水平(Confidence Level),一般用1-α表示。(α的取值大小由实际问题决定,经常取1%,5%,10%),即 P ( θ 1 ≤ θ ≤ θ 2 ) = 1 − α \displaystyle P (\theta_1 \leq \theta \leq \theta_2)=1-α P(θ1θθ2)=1α。我们称区间 [ θ 1 , θ 2 ] \displaystyle \left[\theta_1 , \theta_2\right] [θ1,θ2]是参数 θ \displaystyle \theta θ置信度为 1 − α \displaystyle 1-\alpha 1α 的置信区间。


1.2.2 区间估计的方法

要进行区间估计,一般要先对参数进行点估计,得到点估计值,然后用该点估计的值加减 误差幅度(Margin of Error)置信系数(Confidence Coefficent) 的乘积而得到两个取值,则是置信区间的两个端点。
举个栗子:

假设一个总体服从正态分布 N ( u , σ 2 ) \displaystyle N(u,\sigma^2) N(u,σ2),x1,x2,…,xn是从该总体

中抽得的一组样本。设 x ‾ \displaystyle \overline x x是样本均值,s2是样本方差。总体均值u的

区间估计分为方差已知和方差未知这两种情况:

  1. 当总体方差 σ 2 \displaystyle \sigma^2 σ2已知时,我们可以构建如下指标:

x ‾ − u σ / n \displaystyle \frac{\overline x-u}{\sigma/\sqrt n} σ/n xu

其中n是样本量, σ / n \displaystyle \sigma/\sqrt n σ/n 是误差幅度。该指标服从标准正态分布,即 N ( 0 , 1 ) \displaystyle N(0,1) N(0,1),且区间估计的置信度为(1-α)。接下来,我们可以建立这个等式:

∣ x ‾ − u σ / n ∣ = Z α / 2 \displaystyle \left|\frac{\overline x-u}{\sigma/\sqrt n }\right|=Z_{\alpha/2} σ/n xu=Zα/2

(这里不谈是怎么来的)。
其中 Z α / 2 \displaystyle Z_{\alpha/2} Zα/2是标准正态分布的第100×(1-α/2)分位数,

F ( z ≤ z α / 2 ) = 1 − α / 2 \displaystyle F(z\leq z_{\alpha/2})=1-\alpha/2 F(zzα/2)=1α/2

关于均值u,置信度为1-α的双侧置信区间为:

[ x ‾ − σ n Z α / 2 , x ‾ + σ n Z α / 2 ] \left[\displaystyle \overline x -\frac{\sigma}{\sqrt n}Z_{\alpha/2},\overline x +\frac{\sigma}{\sqrt n}Z_{\alpha/2}\right] [xn σZα/2,x+n σZα/2]

  1. 一般情况下,总体方差都是未知的。当总体方差 σ 2 \sigma^2 σ2未知时,我们可以构建如下统计量:

    x ‾ − u s / n \displaystyle \frac{\overline x-u}{s/\sqrt n} s/n xu
    该指标服从自由度为(n-1)的学生t分布,即t(n-1)。假设区间估计的置信度为1-α,那么我们可以建立下面这个等式来求解置信区间的两个端点。
    ∣ x ‾ − u s / n ∣ = t α / 2 ( n − 1 ) \displaystyle \left|\frac{\overline x-u}{s/\sqrt{n}}\right|=t_{\alpha/2}(n-1) s/n xu=tα/2(n1)
    其中 t α / 2 ( n − 1 ) \displaystyle t_{\alpha/2}(n-1) tα/2(n1)表示自由度为n-1的t分布的第 100 × ( 1 − α / 2 ) \displaystyle 100×(1-\alpha/2) 100×(1α/2)百分位数,关于均值为u,置信度为1-α的双侧置信区间为:

    [ x ‾ − s n t α / 2 ( n − 1 ) , x ‾ + s n t α / 2 ( n − 1 ) ] \displaystyle \left[\overline x-\frac {s}{\sqrt n}t_{\alpha/2}(n-1), \overline x+\frac {s}{\sqrt n}t_{\alpha/2}(n-1)\right] [xn stα/2(n1),x+n stα/2(n1)]


1.3 进行区间估计的Python函数

Python中的stats模块中的t类的interval()函数用于在总体方差未知时进行区间估计。其函数语法为:

interval(alpha,df,loc,scale)
  • alpha为置信水平
  • df是检验量的自由度
  • loc为样本均值
  • scale为标准差
    在这里插入图片描述

假设我们要估计一批产品的重量的期望,抽样了十个进行称重得到重量为为:
10.1, 10, 9.8, 10.5, 9.7, 10.1, 9.9, 10.2, 10.3, 9.9
假设所称出物体重量服从正态分布,我们可以用interval()求置信度为0.95的置信区间:

from scipy import stats
import numpy as np

x = [10.1, 10, 9.8, 10.5, 9.7, 10.1, 9.9, 10.2, 10.3, 9.9]
# np.mean(x)  #求x均值
# stats.sem(x) # 求样本的标准误
# 样本均值服从t分布,样本均值的标准差为标准误
# 在区间估计时,用标准误来表示样本均值的标准差

stats.t.interval(0.95, len(x)-1, np.mean(x),stats.sem(x))

结果如下:
在这里插入图片描述


2. 案例分析

沪深300(399300.SZ)收益率均值的参数估计
以近一年数据为样本计算

# 调取数据
import numpy as np
import tushare as ts
import pandas as pd
token = 'Your Token'   # 输入你的接口密匙,获取方式及相关权限见Tushare官网。
pro = ts.pro_api(token)
df = pro.index_daily(ts_code='399300.SZ')  
df['trade_date'] = pd.to_datetime(df['trade_date'])  
df.set_index(['trade_date'], inplace=True)  # 将日期列作为行索引
df = df.sort_index() 

# 提取沪深300的收益率序列
Retindex=df.pct_chg['2020']

# 绘制沪深300收益率的直方图
plt.hist(Retindex)
Retindex.hist()

结果如图所示:
在这里插入图片描述

from scipy import stats
import matplotlib.pyplot as plt

# 求沪深300收益率的均值
mu = Retindex.mean()

# 求沪深300收益率的标准差
sigma = Retindex.std()

# 在直方图上添加正态分布曲线
fig = plt.figure()
ax1 = ax1 = fig.add_subplot(111)
ax1.plot(np.arange(-6, 6.02, 0.02), stats.norm.pdf(np.arange(-6, 6.02, 0.02), mu, sigma), 'r')
ax2 = ax1.twinx()
ax2.hist(Retindex)
plt.show()

结果如图:
在这里插入图片描述

stats.t.interval(0.95, len(Retindex)-1, mu, stats.sem(Retindex))

结果如下:
在这里插入图片描述
(备注:这里序列中的收益率如-0.02是以-2来表示的,0.032则以3.2表示,而不是0.032。所以得到的置信区间结果不能读错了,-0.07意思不是跌了七个点。)


3. 假设检验

假设检验(Hypothesis Test)是推断统计的另一种重要的方法。

3.1 假设检验概述

参数估计的主要任务是猜测参数的取值,而假设检验的着重点在于检验参数的取值是否等于某个目标值。
假设检验一般有两个隐含的思想:

  • 小概率事件思想 。即小概率事件在一次试验中是不可能发生的,如果在我们的假设下出现了一个小概率事件,则认为我们的假设是错误的。
  • 反证法思想 。反证法思想为先假设我们提出的假设是正确的,然后在该条件下检验观测到的事件是否是小概率事件。如果是则可以否定我们的假设。否则,就无法否定。
    假设检验的基本步骤如下:
    (1) 先根据实际问题的要求提出一个论断,称之为原假设零假设(Null Hypothesis) ,记为H0。同时提出一个与之互为反命题的备择假设(Alternative Hypothesis) ,记为H1
    (2) 然后在H0正确的条件下,求出样本数据出现的频率,看我们手中的样本是不是小概率事件。
    (3) 最后如果样本是小概率事件,那么就认为原假设是错误的。在统计学上,我们称之为拒绝原假设。否则我们不能拒绝H0的决策。

对于原假设和备择假设有如下的选择原则:

  • 原假设应该是受保护的,不应该轻易被拒绝。
  • 备择假设是检验者所希望的结果。
  • 等号永远出现在原假设中。

3.2 两类错误

  • 第一类错误(Type I Error):拒绝了本来正确的原假设(弃真)。
    犯第一类错误的概率记为α。
  • 第二类错误(Type II Error):没有拒绝原本是错误的原假设(取伪)。
    犯第二类错误的概率记为β。
  • 假设检验中这两类错误都难以避免。我们无法同时控制两个错误发生的概率,如果降低想要α,β就会被提高。我们通常需要权衡这两种错误,一般我们选择控制α不限制β

3.3 显著性水平与p值

为控制α,我们往往将α值固定,同时使得:

P ( 拒 绝 H 0 ∣ H 0 为 真 ) ≤ α \displaystyle P(拒绝H_0|H_0为真)\leq \alpha P(H0H0)α

在统计学上,我们称 α \displaystyle \alpha α显著性水平(Significance Level)。常见的显著性水平有0.1, 0.05, 0.025。

为了确定一个事件是不是小概率事件,我们需要了解其发生概率。但是对于连续型随机变量,其取某个具体值的概率为0,我们无法计算。所以就有了使用p值的方法。
我们算出假设在原假设正确条件下,和当前样本中一样极端或更极端的情况出现的概率,这个概率就是p值(p-value)。


3.4 确定小概率事件

判断一个事件是否是小概率事件的一个基本原则:当p值小于α时,我们认为样本为小概率事件。
而对于p指与α的比较,可采取两种方法:临界值检验法(Critical Value Approach)显著性检验法(p-value approch)

  • 临界值检验法:
    使用临界值检验法首先要使用样本数据构建一个用于检验的统计量,这个统计量往往是总体参数的点估计量。然后我们需要确定能够拒绝原假设的最大p值。根据小概率事件的判断原则,这个最大值即是α。然后根据α和统计量所服从的概率分布可以求得临界值。求得临界值后用统计量和与该临界值进行比较,如果统计量与临界值的偏差大于该临界值与原假设的偏差,那么当前样本就与临界值一样极端,其p值也就会小于α。如此以来我们就认为当前样本是小概率事件,应该拒绝原假设。
  • 显著性检验法
    显著性检验与临界值检验法较为类似,同样需要先构建一个用于检验的统计量,与临界值方法不同的是,我们直接根据原假设和统计量的概率分布求解其p值,然后将p值与α进行比较,从而拒绝原假设。

4. t检验

根据构建统计量服从的概率分布,我们所用的参数检验可以分为z检验、t检验、F检验等。其中,t检验所使用的统计量服从t分布,常常用于检验标准差 σ \displaystyle \sigma σ未知的、服从正态分布的总体的均值。
常见的t检验主要有单样本t检验(One Sample t Test)配对样本t检验(Paired Sample t Test)独立样本t检验(Independent Sample Test)

  • 单样本t检验是检验单个变量的均值与目标值之间是否存在差异。如果总体均值已知,样本均值与总体均值之间差异的显著性检验属于单样本t检验。

  • 独立样本t检验用于检验两组来自独立总体的样本 其独立总体的均值是否一样。如果两组样本彼此不独立,则应该使用配对样本t检验。

  • 配对样本t检验用于检验两个相关的样本(配对样本)是否来自具有相同均值的总体。


4.1 单样本t检验

比较:总体均值u与指定检验值u0是否存在显著性差异。
原假设: H0:u = u0
备择假设:H1:u ≠ u0
前提:总体服从正态分布 N ( u , σ 2 ) \displaystyle N(u,\sigma^2 ) N(u,σ2),u为均值, σ 2 \displaystyle \sigma^2 σ2为总体方差。
如果样本容量为n,样本均值为 X ‾ \displaystyle \overline{X} X,在原假设成立的条件下,我们构造以下统计量:

t = X ‾ − u 0 s / n \displaystyle t=\frac{\overline X-u_0}{s/\sqrt n} t=s/n Xu0~ t ( n − 1 ) \displaystyle t(n-1) t(n1)

其中, s = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 \displaystyle s=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline x)^2} s=n11i=1n(xix)2 , 为样本标准差。
将样本均值与样本标准差代入该统计量,就可以得到该统计量的值,然后就可以根据t分布的分布函数计算出p值并与显著性水平α比较,或是与显著性水平α下的临界值进行比较。

# 接着使用上边代码调取的数据
# 用单样本t检验2020年沪深300的收益率均值是否为0
stats.ttest_1samp(Retindex,0) #注意躲坑:1samp的首个字符不是字母l,是数字1

结果:
在这里插入图片描述
这里p值为0.2355742>0.05,所以在5%的置信水平下不能拒绝原假设。进而,可以推断2020年沪深300收益率均值为0。

4.2 独立样本t检验

用独立样本t检验来检验上证指数和深证成指2020年的收益率是否相等。

# 调取数据
# 上证指数
df1 = pro.index_daily(ts_code='000001.SH')  
df1['trade_date'] = pd.to_datetime(df1['trade_date'])  
df1.set_index(['trade_date'], inplace=True)  # 将日期列作为行索引
df1 = df1.sort_index() 

# 深证成指
df2 = pro.index_daily(ts_code='399001.SZ')  
df2['trade_date'] = pd.to_datetime(df2['trade_date'])  
df2.set_index(['trade_date'], inplace=True)  # 将日期列作为行索引
df2 = df2.sort_index() 

# 提取数据
SHRet = df1['2020'].pct_chg 
SZRet = df2['2020'].pct_chg
# 输入两个变量
stats.ttest_ind(SHRet,SZRet)

结果如下:
在这里插入图片描述
p值为0.52382>0.05,所以在5%的显著性水平下我们不能拒绝原假设。进而可以推断2020年上证指数与深证成指收益率均值相等。


4.3 配对样本t检验

独立样本t检验假设两者是相互独立的,对于上证指数与深证成指的收益率,这个假设是很值得怀疑的。所以我们再用配对样本t检验两者均值是否相等。

stats.ttest_rel(SHRet,SZRet)

结果如下:
在这里插入图片描述
这次的p值为0.040551137<0.05,所以在5%的显著性水平下,我们可以拒绝原假设。即2020年上证指数与深证成指的收益率并不相等。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯小啾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值