基于python的京东空调销售数据采集与分析设计与实现

1需求背景介绍

京东作为中国最大的综合性电商平台之一,拥有海量的商品和众多消费者。对于京东来说,了解用户对商品的评价和反馈是至关重要的。因此,基于京东评论数据的采集与可视化分析成为一个具有重要意义的需求。

2数据说明

2.1数据来源

Python基于小米空调销售数据的采集与可视化分析,需要明确数据来源和获取方式。一种常用的数据获取方式是通过京东开放平台提供的API接口进行数据抓取。京东开放平台提供了商品评论相关的API,可以根据商品ID、分类、时间范围等参数来获取评论数据。

采集的网https://search.jd.com/Search?keyword=%E5%8D%8E%E4%B8%BA%E6%89%8B%E6%9C%BA&enc=utf-8&suggest=1.his.0.0&wq=&pvid=ef0f928972e14e979c48d656b08d5e04,如下图1所示。

图 1采集的网站

2.2数据样例

导入必要的库:requests用于发送HTTP请求,BeautifulSoup用于解析HTML,csv用于处理CSV文件,time和random用于控制爬取间隔时间。

数据采集结果大概1.3万条,如图2所示:

图 2数据采集结果

2.3数据说明

在CSV文件中,每个字段的数据说明如下:

'评论内容':用户对商品的评论内容。

'地区':用户所在的地区或IP属地。

'用户名':用户在京东平台的用户名或昵称。

'京东会员':用户是否是京东会员。可能的取值包括“是”和“否”。

'能耗级别':商品的能耗级别等信息。

'配置':商品的配置信息,例如型号、规格等。

'下单时间':用户下单购买商品的时间。

'评分':用户对商品的评分,一般为0-5之间的数字。

'产品':被评论的具体商品名称或描述。

这些字段包含了关于用户评论的各种信息,从用户对商品的评价、地区信息到购买时间、配置等详细信息。通过这些字段的数据,可以进行各种分析和可视化操作,帮助企业了解用户对商品的反馈和评价,优化产品设计和改进市场策略。

4技术选择

爬虫技术:

使用Python的Requests库发送HTTP请求,获取京东评论数据。

使用BeautifulSoup库解析HTML页面,提取所需字段的信息。

数据清洗技术:

使用Python的Pandas库进行数据清洗和预处理。

可以去除重复数据、处理缺失值、格式转换等操作,确保数据的准确性和一致性。

数据可视化技术(pyecharts):

使用pyecharts库进行数据可视化分析。

pyecharts是一个基于Echarts图表库的Python数据可视化工具,支持各种图表类型,如柱状图、折线图、词云图等。

使用这些技术可以实现整个采集与分析的流程:

采集阶段:

使用爬虫技术获取小米空调销售数据,包括评论内容、地区、用户名等字段。

数据清洗与预处理阶段:

利用数据清洗技术对采集到的数据进行清洗,例如去重、处理缺失值等。

数据分析阶段:

使用Pandas库进行数据分析,统计描述、词频分析、情感分析等。

利用pyecharts库创建各种图表,可视化展示数据分析结果。

结论与建议:

根据数据分析和可视化结果,得出结论和见解。

提出相应的建议,如改进产品、优化营销策略、增强用户体验等。

通过以上技术选择,可以实现对小米空调销售数据的全流程处理,从数据采集到清洗、分析和可视化展示。这样的分析过程可以帮助企业深入了解用户对商品的评价和需求,为决策提供有价值的数据支持,并优化产品和服务,提升用户满意度和竞争力。

5分析环境准备

开发平台环境:

安装操作系统:确保计算机上安装了适当的操作系统,如Windows、Linux或macOS。

确保计算机具有足够的存储空间和内存来处理数据采集和分析的需求。

编译器/集成开发环境(IDE):

选择合适的Python编程语言环境,如PyCharm等。这些工具提供了方便的代码编辑、调试和运行环境,简化了开发过程。

安装所选IDE所需的依赖项和插件,以便能够顺利地进行Python编程和数据分析任务。

开发技术:

Python编程语言:确保计算机上已经安装了Python解释器,使用最新版本的Python(如Python 3.7及以上)。

第三方库:根据需要安装和导入必要的第三方库,如Requests、Pandas、NumPy、pyecharts等。这些库提供了丰富的功能和工具,用于网络请求、HTML解析、数据清洗、数据处理和可视化等任务。

Web爬虫技术:熟悉和掌握Python的爬虫技术,了解HTTP请求、HTML解析、数据提取等相关知识。

数据处理与分析:使用Pandas和NumPy等库进行数据清洗、整理和处理,使用pyecharts等库进行数据可视化和分析。

在准备好开发平台环境、选择合适的IDE以及安装所需的第三方库后,就可以开始python基于B站视频评论信息的采集与分析的开发工作了。根据需求编写相应的代码,利用爬虫技术获取评论数据,使用数据处理和可视化技术对数据进行清洗、整理和呈现,最终得出有关评论变化趋势、统计信息等的分析结果。

添加图片注释,不超过 140 字(可选)

图 3可视化环境

图 4爬虫环境

6分析过程

6.1小米空调销售满意度分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化,jieba用于中文分词,stylecloud用于生成词云图。

读取CSV文件并进行初步数据观察:使用pd.read_csv函数读取"京东华为手机评论.csv"文件,并通过print(df)和print(df.columns)打印出DataFrame的内容和字段名。

情感分析:使用cnsenti库进行情感分析,遍历评论内容列表,获取每条评论的情感倾向(积极、消极、中性)并添加到DataFrame中。

情感分析结果可视化:通过对DataFrame进行分组统计,得到各情感倾向的评论数量,并使用pyecharts的Pie类创建饼图可视化情感分析结果。

通过以上步骤,实现了对小米空调销售评论数据的情感分析和可视化展示。分词和关键词统计可以帮助了解用户评论中的热门关键词和话题,而情感分析则提供了对用户情感倾向的评估。这样的分析结果和可视化图表可以帮助企业更好地了解用户对产品的情感反馈,并在改进产品、优化市场策略等方面提供指导和决策依据。代码如图5所示:

图 5满意度分析代码(部分)

运行结果,如图6所示:

图 6运行结果

6.2小米空调销售全国各地区评论分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调销售.csv"文件,并将数据存储在DataFrame中。通过print(d2)打印出DataFrame的内容。

地区名称转换:通过一个字典provinces将地区名称进行转换,将简称转换为全称,确保与地图数据匹配。

数据清洗与预处理:对DataFrame进行清洗,去除缺失值等。

地区评论数量统计:使用groupby方法对地区进行分组,并统计每个地区的数量。

地区评论数量地图可视化:利用pyecharts的Map类创建地图,设置地图类型为中国地图。通过.add()方法将地区评论数量数据添加到地图中,设定相关配置项,如颜色、标签等。最后使用.render()方法将地图保存为HTML文件。

通过以上步骤,实现了对小米空调销售全国各地区数量的分析和可视化展示。地区小米空调销售数量统计能够了解不同地区用户对产品的反馈情况,而地图可视化则能直观展示各地区小米空调销售数量的差异和分布情况。这样的分析结果和可视化图表可以帮助企业识别地区市场的特点和潜力。主要代码如图7所示:

添加图片注释,不超过 140 字(可选)

图 7分析代码

运行结果如图8所示:

图 8 运行结果

6.3小米空调销售下单趋势可视化分布分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调销售.csv"文件,并将数据存储在DataFrame中。通过print(d4)打印出DataFrame的内容。

数据清洗与预处理:对DataFrame进行清洗和预处理。在这里,对'下单时间'字段进行处理,提取小时信息。

销售下单数量统计:使用groupby方法对'下单时间'进行分组,并统计每个小时段的评论数量。

小米空调销售下单趋势可视化:利用pyecharts的Line类创建折线图,设置x轴为'下单时间',y轴为销售数量。设定相关配置项,如颜色、线条平滑等。最后使用.render()方法将折线图保存为HTML文件。

通过以上步骤,实现了对小米空调销售下单趋势的可视化分布。评论趋势分析可以帮助企业了解用户在不同时间段对产品的下单活跃度和倾向。折线图的绘制能够直观地展示下单数量随时间变化的趋势,并有助于发现下单数量的高峰时段或变化规律。这样的分析结果和可视化图表可以帮助企业把握用户评论的时机和趋势,优化产品和服务,提升用户满意度和竞争力。实现的主要代码如图9所示:

图 9主要代码

运行结果如下图:

6.4小米空调销售订单评分占比分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调销售.csv"文件,并将数据存储在DataFrame中。通过print(df_price)打印出DataFrame的内容。

评分数量统计:使用groupby方法对'评分'进行分组,并统计每个评分的数量。

评分占比饼图可视化:利用pyecharts的Pie类创建饼图,设置饼图的初始配置项,如颜色、标签等。通过.add()方法将评分数量数据添加到饼图中,设定相关配置项。最后使用.render()方法将饼图保存为HTML文件。

通过以上步骤,实现了对小米空调销售订单评分的占比分析和可视化展示。评分占比分析能够帮助企业了解用户对产品的整体评价分布情况。饼图的绘制可以直观地展示各评分的占比比例,以及相对大小关系。这样的分析结果和可视化图表可以帮助企业了解用户对产品的满意度和不满意度,为产品改进、服务优化等方面提供参考和决策依据。同时,评分占比分析还可以用于与竞争对手的评分进行比较,了解市场竞争情况,指导企业的产品调整和发展策略。主要代码如下图10:

图 10主要代码

运行结果如图11:

添加图片注释,不超过 140 字(可选)

图 11运行结果

6.5小米空调能耗等级分布数量分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调销售.csv"文件,并将数据存储在DataFrame中。通过print(d6)打印出DataFrame的内容。

颜色数量统计:使用groupby方法对'颜色'进行分组,并统计每种能耗的数量。

颜色分布数量条形图可视化:利用pyecharts的Bar类创建条形图,设置x轴为颜色,y轴为数量。设定相关配置项,如标题、轴标签等。最后使用.render()方法将条形图保存为HTML文件。

通过以上步骤,实现了对空调能耗分布数量的分析和可视化展示。颜色分布数量分析能够帮助企业了解用户对不同空调能耗的偏好和选择情况。条形图的绘制可以直观地展示各个颜色的评论数量,比较不同空调能耗之间的差异。这样的分析结果和可视化图表可以帮助企业了解市场上不同空调能耗的受欢迎程度,指导产品规划和库存管理。此外,还可以根据空调能耗分布数量的分析结果,进行更有针对性的市场推广活动和销售策略,提升产品的市场竞争力。主要代码如下:

图 12代码

运行结果:

图 13运行结果

6.6小米空调价格分布数量比例分析

导入所需库:导入了pandas用于数据处理和分析,pyecharts用于可视化。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调价格.csv"文件,并将数据存储在DataFrame中。通过print(df_subj)打印出DataFrame的内容。

配置数量统计:使用cut方法对'价格'进行等宽离散化分组,并统计每个价格区间的数量。

价格区间分布数量比例饼图可视化:利用pyecharts的Pie类创建饼图,设置饼图的初始配置项,如颜色、标签等。通过.add()方法将配置数量数据添加到饼图中,设定相关配置项。最后使用.render()方法将饼图保存为HTML文件。

通过以上步骤,实现了对小米空调价格分布数量比例的分析和可视化展示。米空调价格分布数量比例分析能够帮助企业了解用户对空调价格的选择情况和偏好。饼图的绘制可以直观地展示各个空调价格的占比比例,以及相对大小关系。这样的分析结果和可视化图表可以帮助企业了解市场上不同空调价格的受欢迎程度,指导产品规划和推广策略。同时,还可以根据空调价格分布数量比例的分析结果,调整产品线、优化供应链管理,以满足用户的不同需求和提升产品竞争力。主要代码如下图:

运行结果:

添加图片注释,不超过 140 字(可选)

6.7小米空调销售评论词频分析

导入所需库:导入了pandas用于数据处理和分析,jieba用于中文分词,stylecloud用于生成词云图。

数据准备与初步观察:使用pd.read_csv函数读取"小米空调销售.csv"文件,并将数据存储在DataFrame中。通过print(df)打印出DataFrame的内容。

文本预处理:将所有评论内容拼接成一个字符串texts。

分词处理:使用jieba.cut对评论内容进行分词,获取分词结果。

关键词统计:使用字典keyword_count统计每个关键词的个数。

生成词云图:利用stylecloud.gen_stylecloud生成基于关键词频率的词云图。设置参数,如字体、颜色、最大字体大小等。

通过以上步骤,实现了对小米空调销售评论的词云分析。词云分析能够帮助企业了解用户对产品的关注点、热门话题和情感倾向。词云图的生成可以直观地展示关键词的频率和重要性。更高频率的词语在词云图中显示得更大,从而帮助用户快速捕捉到评论中的关键信息。这样的分析结果和可视化图表可以帮助企业了解用户对产品的整体印象和评价,从而指导产品改进、市场推广等方面的决策。同时,词云分析也可以用于发现潜在的问题、痛点或需求,为企业提供改进和创新的方向。主要代码如下:

运行结果:

添加图片注释,不超过 140 字(可选)

7分析结果可视化

7.1满意度分析

满意度分析用饼图展示,代码如下:添加图片注释,不超过 140 字(可选)

根据小米空调销售满意度分析结果,总共分为三个情感类别:满意、不满意和一般。下面是对满意度分析结果的解读:

根据用户反馈,满意度呈现明显的分布,其中“不满意”占比最高,为3513条反馈,占总数的约47%。这表明大部分消费者在购买或使用小米空调后,对产品的表现或售后服务感到不满。其次,“一般”反馈为1098条,占比约14%,说明有一定数量的用户对产品的体验持中立态度。最后,“满意”的反馈为2319条,占比约31%,这表明小米空调仍有不少用户对其产品和服务表示认可,但这一比例远低于不满意的反馈,表明仍有较大的改进空间。

综合来看,尽管小米空调在某些消费者中获得了满意的评价,但大部分用户对其产品或服务仍有一定的负面看法。需要在产品质量、售后服务等方面进行优化,以提升用户整体的满意度和品牌忠诚度。

7.2小米空调销售全国各地区数量分析

全国各地区评论数量分析用地图展示,代码如下:添加图片注释,不超过 140 字(可选)

根据小米空调销售数据的地区分布情况,可以得出以下分析结论:

广东省的销售量遥遥领先,达到1466条,占据了最高的比例。这表明广东省作为经济发达地区,消费者购买力强,可能也是小米空调的主要市场。此外,北京市和河南省的销售量分别为583和541,位居第二和第三,显示出这些省份的市场需求较大,尤其是北京市作为首都,具有较强的消费潜力。

其次,上海市(256)、四川省(429)以及山东省(332)等省市的销量也相对较高,说明这些地区的市场接受度较好,用户群体较为广泛。

然而,部分省份和地区的销量较低,如香港特别行政区(5)、西藏自治区(5)和青海省(2),可能受到经济发展水平、市场推广力度以及消费者需求等因素的制约。总体来看,销售数据反映出小米空调在一些一线和二线城市的市场占有率较高,而在偏远地区的渗透率相对较低。

因此,未来小米空调可以考虑加大在这些低销量地区的市场推广力度,提升品牌影响力,进一步扩大市场份额。

7.3小米空调销售下单趋势可视化分布分析

小米空调销售下单趋势可视化分布分析用面积图展示,主要代码如下:

从小米空调的销售下单时间可以看出,消费者的购买行为呈现出明显的时间集中性。20点的下单量最高,达到1134条,占据了整个数据的最大份额。这表明晚上8点左右是消费者购物的高峰时段,可能与晚间休息时间及促销活动的影响有关。其次,21点(696)和22点(689)也有较高的下单量,说明晚间时段继续是消费者活跃的时间段,很多人选择在一天的工作或休息之后进行网购。

04点(5)和05点(9)的下单量极低,这符合常规的消费行为模式,人们通常在凌晨时段处于休息状态,不太可能进行大规模购物。而在08点至15点之间,尽管销售量有所波动,但整体较低,表明消费者的活跃度在上午和下午时间段较为平缓。

总体来看,小米空调的销售呈现出明显的晚间高峰特点,特别是在傍晚和晚上,可能与消费者的生活节奏以及电商平台的促销活动有关。商家可以根据这一趋势,在这些时间段加强广告投放或限时促销,进一步提升销量。

7.4小米空调销售评分占比分析

小米空调销售评分占比分析用饼图展示,主要代码如下:

5分评分占据了绝大多数,达到6824条,说明大部分消费者对小米空调的满意度较高,给予了最高评价。这可能反映出小米空调在产品质量、功能表现或用户体验等方面得到了大部分用户的认可。其次,3分评分为73条,表明有一小部分用户对产品的表现持中立态度,可能是对空调的某些功能或性能尚有疑虑,但总体上不至于表现出强烈的不满。

此外,4分评分为22条,说明也有部分用户在总体满意的基础上,可能因为一些细节问题未能完全达到他们的期望,因此给予了较高但非满分的评分。1分和2分评分合计仅为11条,虽然这些低分反馈占比极小,但仍需引起注意,可能涉及个别用户对产品的极度不满意或遇到严重的质量问题。

总体来看,小米空调的销售评分主要集中在较高的评分区间,显示出大多数消费者的高度满意。然而,少数低分反馈也提示需要进一步改进产品或服务,尤其是在个别细节和质量控制方面。

7.5小米空调不同款式类型分布数量分析

小米空调不同款式类型分布数量分析用柱形图展示,主要代码如下:

从小米空调销售不同款式的分布情况来看,可以得出以下分析:

首先,1.5匹一级能效款式表现出色,销量高达1882条,是所有款式中销售量最高的。这表明1.5匹的空调在市场上具有较强的需求,尤其是一级能效的节能特性可能深受消费者青睐,适合大多数家庭使用。其次,3匹一级能效款式也表现良好,销售量分别为1116条和163条,说明较大匹数的空调仍然有较高的市场需求,尤其适用于大户型或商用环境。

此外,2匹一级能效的款式在销量上也较为突出,多个型号(如2匹、2匹自然风等)销量达到528条、539条,表现稳定。这显示出2匹空调是小米产品中销量的一个重要组成部分,满足了中等面积家庭的需求。

相比之下,1匹款式的销量较低,尤其是带有较低能效等级的型号(如1匹五级能效),销量为356条,可能由于较小匹数和低能效等级的空调受到了一定的市场限制。

总体来看,小米空调的销售数据表明,1.5匹和3匹的一级能效款式最为畅销,消费者偏好中等和大匹数的空调产品,且节能和性能优越的特性是购买决策的重要因素。

7.6小米空调价格区间分布数量比例分析

小米空调价格区间分布数量分析用柱形图展示,主要代码如下:

根据小米空调的价格区间数据分布,整体价格偏向中低端市场,消费者的购买偏好集中在价格较为亲民的区间。具体来看:

(1539.022, 2445.8] 价格区间的销量最高,达到了46台,占据了整体销量的最大份额。这表明,消费者对价格在1500至2400元左右的空调产品需求较高,可能代表着性价比高、适合大众家庭使用的主流产品。

(2445.8, 3343.6] 区间次之,销量为27台,显示出中高端市场也有一定的需求,价格在2400至3300元之间的空调产品依然受到青睐,可能因具备更高的能效或更多的功能特性。

(3343.6, 4241.4]、(4241.4, 5139.2] 等较高价格区间的销量逐步减少,销量分别为12台和6台,说明高价位空调的市场需求较小,这类产品可能适合需求较为特殊的用户群体,如大户型或商用场所。

价格区间高于6000元的空调销量明显低迷(4台至1台不等),表明大部分消费者更倾向于选择性价比高的空调产品,而高端市场的需求相对较少。

小米空调的销售数据表明,中低价格区间的产品是市场主流,价格较高的产品面向的是小众市场。。

7.7小米空调销售评论词频分析

评论词频分析用词云图展示,主要代码如下:

从小米空调销售评论的关键词分布来看,消费者对该产品的关注主要集中在外观、性能、节能、智能化操作等方面。

首先,外观、简约和时尚等词汇频繁出现,表明消费者十分重视小米空调的设计感和与现代家居风格的融合。现代家居风格和完美融合进一步体现了空调产品在视觉上的高颜值和与家居环境的契合度。

其次,节能和巨省电的相关词汇数量较多,反映出小米空调在节能效果上的突出表现,消费者对其高效节能的功能尤为认可,尤其是提到的高效压缩机和智能变频技术,显示了空调在节能方面的技术优势。

此外,性能、制冷和制热相关的关键词频繁出现,说明消费者对空调的实际使用效果非常关注,尤其是空调在不同季节下的稳定运行能力。

智能、米家APP和远程控制等关键词也突显了消费者对小米空调智能化操作的高度评价,能够通过APP进行远程控制的便捷功能,使得操作更加人性化。

消费者在评价小米空调时,强调了其外观设计、节能性能和智能操作功能,这些都成为购买决策的重要因素。

8 结论与建议

8.1 结论

购买时段偏向晚间:小米空调的销量在20点至22点之间呈现出明显的高峰,这表明消费者的购买行为具有明显的夜间集中趋势。晚间时段,尤其是晚上8点左右,用户更愿意进行购物,可能与日间工作繁忙及晚间促销活动有关。

较高的客户满意度:小米空调的评分大部分集中在4分和5分之间,尤其是5分评分占据了绝大多数,显示出大部分消费者对产品的质量、功能和性能非常满意。尽管存在少量低分反馈,但这些反馈的占比非常小,表明小米空调在市场上的接受度和品牌忠诚度较高。

主流款式为1.5匹和3匹:从款式分布来看,1.5匹和3匹的空调产品销售最为火爆,尤其是1.5匹一级能效款式,占据了销量的最大份额。中等和大匹数的空调更符合消费者的需求,且一级能效的节能特性受到高度认可。

价格区间集中在中低端市场:销售数据表明,小米空调的消费者主要集中在1500元至3400元的价格区间,且销量最高的区间为1500元至2400元。这意味着大多数消费者偏向购买性价比高的空调产品,而高端市场的需求相对较低。

智能化和节能是重要卖点:在评论分析中,节能效果和智能操作成为最为突出的话题。用户特别关注空调的节能能力和智能变频技术,认为这些功能在提高使用体验和降低能耗方面发挥了重要作用。此外,米家APP远程控制功能的便捷性也获得了较高评价。

8.2建议

优化晚间促销活动:鉴于晚间是消费者购买空调的高峰时段,小米可以考虑在这一时段加大营销力度,推出限时折扣、秒杀活动或增加广告投放,从而进一步提升销量。

聚焦中低价市场,提升性价比:考虑到小米空调在中低价格区间的强劲表现,品牌应继续保持产品在1500元至3400元区间的竞争力。可以通过提升产品的节能效果、增加智能功能或优化外观设计来吸引更多消费者。

强化1.5匹和3匹空调的优势:由于1.5匹和3匹的空调产品销量较好,小米应进一步提升这些款式的功能,尤其是在能效和制冷/制热效果方面进行优化,满足消费者对这些核心性能的需求。

注重节能和智能化功能的研发:节能和智能化已成为消费者选择空调时的重要考虑因素。小米应持续加大在智能变频技术、低能耗设计及智能家居兼容性方面的研发投入,提升空调的节能和智能功能,以便在未来市场竞争中占据优势。

提升高端市场产品的吸引力:尽管高端空调的销量较低,但随着消费者对空调性能要求的提升,小米可以考虑进一步优化高端产品的设计和功能,例如增强其智能化、空气质量管理等特色功能,以拓展这一细分市场。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值