学线代时学到一个求主特征值的方法,叫幂乘法
其中,数学推理过程虽然可以看懂,但是只感觉到了面子,没感觉到这种思想的里子,所以就想用python算一下
原题是这样的
于是,我写了以下代码
import numpy as np
#初始条件
A=np.mat([[1.,1.],[2.,-2.]])
v_last=np.mat([[1.],[0.]])
l=1000 #迭代次数
for i in range(l) :
v_now=np.dot(A,v_last)
rows,cols=v_now.shape
max_v_now = 0.
for a in range(rows):
for b in range(cols):
ab_v_now = v_now[a,b]
if abs(ab_v_now) > abs(max_v_now):
max_v_now=abs(ab_v_now)
if i<l-1 :
if max_v_now > 1.:
for a in range(rows):
for b in range(cols):
v_now[a,b] = v_now[a,b] / max_v_now
v_last = v_now
max_v_last =0.
for a in range(rows):
for b in range(cols):
ab_v_last = v_last[a,b]
if abs(ab_v_last) > abs(max_v_last):
max_v_last = ab_v_now
print(max_v_last)
迭代次数为1000
得到结果是 -2.5615528128088303 ,和答案 −2.562 相同
所以说,幂乘法是正确的。
但是其中蕴含的空间解释是什么,
对一个向量多次进行同一种变换,会使该向量逐渐趋向于该变换的主特征向量方向
所以变换其实也像平行四边形一样,将力分向特征向量方向,作用于向量