力扣LeetCode #11 盛最多水的容器(MaxArea)

- 题目描述

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。

来源:LeetCode(https://leetcode-cn.com/problems/container-with-most-water)

- 示例

输入:[1,8,6,2,5,4,8,3,7]
输出:49

- 思路分析

  1. 双重循环法:很容易想到,简单粗暴,时间复杂度为O(n2)
  2. 动态规划法:采用滑动窗口。刚开始将窗口设置为最大值,然后逐步缩小,每次将后移或前移相对更小的数的指针。

- JAVA实现

  • 双重循环法`
public class MaxArea {
	public static int maxArea(int[] height) {
        int len = height.length, maxArea = 0;
        for(int i=0; i<len-1; i++) {
            int start = height[i], last = 0;
            for(int j=len-1; j>i; j--) {  //宽度差在变小,如果想要得到更大的面积,高必须变大
                int end = height[j];
                if(end <= last) continue;
                else {
                    int area = (j-i) * (start < end ? start : end);
                    if(area > maxArea) {
                        last = end;
                        maxArea = area;
                    }
                }
            }
        }
        return maxArea;
    }
}
  • 动态规划法
public class MaxArea {
	public static int maxArea_(int[] height) {
        int len = height.length, maxArea = 0, i = 0, j = len - 1, last = 0;
        while(j - i > 0) {
            int min = height[j]>height[i] ? height[i] : height[j];
            if(min > last) {
                int area = (j-i)*min;
                if(area > maxArea) {
                    maxArea = area;
                    last = min;
                }
            }
            if(height[i] > height[j]) j--;
            else i++;
        }
        return maxArea;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值