【Dive into Deep Learning |动手学深度学习(李沐)】4.2/4.3 多层感知机代码实现(代码含注释)

从零开始实现

读取数据

导包

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256  #小批量数据大小
#加载数据
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) #之前定义的函数,其实应该是封装在d2l中的

初始化模型参数

实现一个具有单隐藏层的多层感知机, 它包含256个隐藏单元。 注意,我们可以将这两个变量都视为超参数。

#初始化模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256 #分别代表输入个数、输出个数、以及隐藏层隐藏单元的个数

#W1是随机生成的,输入为num_imputs,输出为隐藏单元的个数num_hiddens,requires_grad=True代表需要求导
W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
#偏移b1初始化为0
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
#W2也是随机初始的,输入为num_hiddens,输出为隐藏单元的个数num_outputs,也是需要求导
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
#偏移b2初始化为0
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

激活函数

实现ReLU激活函数,回归一下ReLU函数,本质上就是一个求最大值的函数。
在这里插入图片描述

#激活函数ReLU
def relu(X):
    a=torch.zeros_like(X) #生成一个形状与X一致的零矩阵
    return torch.max(X,a) #返回他俩的最大

模型

实际上就是上一节这样一个过程,如图。
在这里插入图片描述

#模型
def net(X):
    X = X.reshape((-1, num_inputs)) #将X拉成一个2维的矩阵
    H = relu(X@W1 + b1)  # 这里“@”代表矩阵乘法
    return (H@W2 + b2)

损失函数

使用交叉熵损失函数(CrossEntropyLoss)

#损失
loss = nn.CrossEntropyLoss(reduction='none') 

训练

#训练
num_epochs, lr = 10, 0.1  #训练次数、学习率
updater = torch.optim.SGD(params, lr=lr) #优化
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) #使用的上一节的训练函数,封装在d2l中的

结果
在这里插入图片描述
预测

#预测
d2l.predict_ch3(net, test_iter)

在这里插入图片描述

简洁实现

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
  1. nn.Flatten()用于将输入的二维图像数据展平为一维向量,以适应后续的全连接层。
  2. nn.Linear(784, 256)定义了一个全连接层,输入大小为784,输出大小为256。这一层将输入特征进行线性变换。
  3. nn.ReLU()定义了一个ReLU激活函数层,将线性变换的结果进行非线性变换,增加网络的表达能力。
  4. nn.Linear(256, 10)定义了另一个全连接层,输入大小为256,输出大小为10。这一层将前一层的输出进行线性变换,得到最终的预测结果。
  5. init_weights是一个自定义的函数,用于初始化模型的权重。在这个例子中,它使用了nn.init.normal_函数来对模型中的nn.Linear层的权重进行正态分布初始化,标准差为0.01。
  6. net.apply(init_weights)是将初始化权重的函数应用于模型的所有层。通过调用apply方法,并传入初始化权重的函数,可以遍历模型的所有层,并对满足条件的层进行权重初始化。

这里和上面的差不多。

batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

结果
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
你好!以下是一个示例代码,用于进行深度学习模型的微调(fine-tuning): ```python import torch import torchvision # 加载预训练模型 model = torchvision.models.resnet18(pretrained=True) # 冻结所有参数 for param in model.parameters(): param.requires_grad = False # 替换全连接层 num_features = model.fc.in_features model.fc = torch.nn.Linear(num_features, num_classes) # 定义损失函数和优化器 criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9) # 加载数据集 train_dataset = torchvision.datasets.ImageFolder('path/to/train/dataset', transform=...) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # 训练模型 model.train() for epoch in range(num_epochs): for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 保存微调后的模型 torch.save(model.state_dict(), 'fine_tuned_model.pth') ``` 这是一个简单的示例代码,你可以根据自己的需求进行微调。你需要替换代码中的`path/to/train/dataset`为你自己的训练数据集的路径,并根据你的数据集进行相应的数据预处理操作。 当然,这只是一个基本的示例,实际的微调过程可能还需要考虑其他因素,如习率调整、数据增强等。具体的微调策略会根据你的任务和数据集的特点而有所不同。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值