【Dive into Deep Learning |动手学深度学习(李沐)】4.6 暂退法(Dropout)--学习笔记

动机

  • 一个好的模型需要对输入数据的扰动鲁棒
    • 使用有噪音的数据等价于Tikhonov正则
    • 丢弃法:在层之间加入噪音

无偏差的加入噪音
对于x加入噪音得到x’,希望噪音的期望不变,即E[x’]=x.
丢弃法对每个元素进行如下扰动:
在这里插入图片描述
期望不变的原因:
在这里插入图片描述

使用丢弃法

训练中的丢弃法

在这里插入图片描述

  • h表示隐藏层的输出并作用于激活函数 σ \sigma σ
  • h’表示使用丢弃法,会将隐藏层的某些隐藏单元消除,因为在p的概率内,xi’会等于0,而放大另一些隐藏单元的权重。如图,隐藏单元h2、h5被消除,而h1、h3、h4的权重被放大。
  • o表示输出层的输出
  • y则表示作用softmax得到最后的输出

推理中的丢弃法

在这里插入图片描述
在推理的时候,丢弃法输出的就是输出本身,不会对输出有改变。这样能保证确定性的输出。

总结

在这里插入图片描述

代码实现

要实现单层的暂退法函数, 我们从均匀分布U[0,1]中抽取样本,样本数与这层神经网络的维度一致。 然后我们保留那些对应样本大于p的节点,把剩下的丢弃。
在下面的代码中,我们实现 dropout_layer 函数, 该函数以dropout的概率丢弃张量输入X中的元素, 如上所述重新缩放剩余部分:将剩余部分除以1.0-dropout。

import torch
from torch import nn
from d2l import torch as d2l


def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)

mask = (torch.rand(X.shape) > dropout).float()。这是一个使用随机掩码来进行 dropout 操作的代码片段。它通过生成一个与输入张量 X 相同形状的随机数张量,然后将其中大于 dropout 阈值的元素置为 1,小于等于 dropout 阈值的元素置为 0。最后,将该随机数张量转换为浮点数类型的张量。这样,我们可以使用该掩码对输入张量 X 进行 dropout 操作。

通过下面几个例子来测试dropout_layer函数。 我们将输入X通过暂退法操作,暂退概率分别为0、0.5和1。

X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

在这里插入图片描述
可以看到,x是一个2行8列的张量,当dropout设为0时,就保留x中的所有元素,当dropout设为0.5时,x中的元素就有0.5的概率被设为0,当dropout设为1时,x中的所有元素都被置为0.

定义模型参数

#输入、输出、第一个隐藏层个数、第二个隐藏层个数
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256  

定义模型

dropout1, dropout2 = 0.2, 0.5 #设置dropout的值

class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training = True): 
        #如果是在训练,定义参数
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        # 只有在训练模型时才使用dropout
        if self.training == True:
            # 在第一个全连接层之后添加一个dropout层
            H1 = dropout_layer(H1, dropout1)
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out


net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

训练和测试

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

简洁实现

net = nn.Sequential(nn.Flatten(), #将输入拉平,拉成一个2维的
        nn.Linear(784, 256), #第一个全连接层,其中784是输入,256是隐藏层大小
        nn.ReLU(), #激活函数
        # 在第一个全连接层之后添加一个dropout层
        nn.Dropout(dropout1),
        nn.Linear(256, 256), #再一个隐藏层
        nn.ReLU(),
        # 在第二个全连接层之后添加一个dropout层
        nn.Dropout(dropout2),
        nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear: #如果m是线性模型,,初始化参数
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
trainer = torch.optim.SGD(net.parameters(), lr=lr) #优化函数
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) #开始训练

在这里插入图片描述

小结

  • 暂退法在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
  • 暂退法可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
  • 暂退法将活性值h替换为具有期望值h的随机变量。
  • 暂退法仅在训练期间使用
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值