一、导数的概念
1. 凑导数定义式
凑导数定义式计算导数或证明导数存在。
【注】:f(x) 在 x = x0 处可导时,f’(x0) 定义式上的分子需为:一个动点+一个不动点。
若为两个动点,则无法推出f(x) 在 x = x0 处可导。
例题:(与微分方程进行结合)
【注】:
2. 可导性证明
函数 f(x) 在某点可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。
定理:若函数 f(x) 在 x0 处可导,则必在点 x0 处连续。
上述定理说明:
(1)函数可导则函数连续;
(2)函数连续不一定可导;
(3)不连续的函数一定不可导。
【总结】:在一元函数中,可导 = 可微;可导必连续,但是连续不一定可导。
【注】:函数 f(x) 在某区间内有定义,且 limx→zf(x) = y ,不能推出函数 f(x) 在 x = z 处连续,即 f(z) 不一定等于 y 。
3. F(x) = f(x)·|x - a|(求函数的不可导点)
-
f(x) = |x| 在 x = 0 处不可导
-
F(x) = f(x)·|x| 在 x = 0 处可导的充分必要条件是:f(0) = 0
-
F(x) = f(x)·|x - a| 在 x = a 处可导的充分必要条件是:f(a) = 0
例题:
【注】:
- f(x) = (x - a)2 · |x - a| 在 x = a 处的最高阶导数为:2 (即 2 阶可导,3 阶导数不存在);
f(x) = (x - a)3 · |x - a| 在 x = a 处的最高阶导数为:3 (即 3 阶可导,4 阶导数不存在);
f(x) = (x - a)n · |x - a| 在 x = a 处的最高阶导数为:n (即 n 阶可导,n + 1 阶导数不存在)。
4. f(x) 与 |f(x)|
f(x) 与 |f(x)| 的可导关系:
-
f(x) 可导与 |f(x)| 可导不能互推
-
若 f(x0) ≠ 0 ,则 f(x) 在 x0 处可导 ⇔ |f(x)| 在 x0 处也可导(在值不为 0 处,可导性一样)
-
若 f(x0) = 0 且 f’(x0) = 0 ,则在 x0 处可导 ⇔ |f(x)| 在 x0 处也可导
-
若 f(x) 在 x0 处可导,则 |f(x)| 在 x0 处不可导的充要条件是:f(x0) = 0 且 f’(x0) ≠ 0
5. 总结
-
f(x) 在 x0 处连续 ⇒ f(x) 在 x0 的领域内有定义
-
f(x) 在 x0 处可导 ⇒ f(x) 在 x0 处连续 ⇒ f(x) 在 x0 的领域内有定义
-
f(x) 在 x0 处二阶可导
⇒ f’’(x) 在 x0 处有定义
⇒ f’(x) 在 x0 处可导
⇒ f(x) 在 x0 处连续 -
f(x) 在 x0 的领域内可导 ⇒ f(x) 在 x0 的领域内连续 ⇒ f’(x) 在 x0 的领域内有定义
-
函数 f(x) 可导 ⇒ 函数 f(x) 连续 =/=> 导函数 f’(x) 连续
-
几个重要结论:
例题:
【注】:二阶可导 ⇒ 一阶导数连续
6. Δx , Δy 与 dx , dy
若函数 f(x) 可微,则当 Δx → 0 时,有:
- dy = f’(x0)·Δx = 微分 = 线性主部
- Δy = f(x0 + Δx) - f(x0) = f’(x0)·Δx + o(Δx) = dy + o(Δx)
微分(dy)的几何意义:切线增量
例题:
设函数 f(u) 可导,y = f(x2) 当自变量 x 在 x = -1 处取得增量 Δx = -0.1 时,相应的函数增量 Δy 的线性主部为 0.1 ,则 f’(1) = ? 【1/2】
【解析】:Δy 的线性主部 dy = f’(x2)·2x·dx = f’(x2)·2x·Δx ,
当自变量 x 在 x = -1 处取得增量 Δx = -0.1 时 dy = 0.1 ,有:
0.1 = f’(1)·(-2)·(-0.1) ,推出 f’(1) = 0.5
二、导数的计算
1. 求导公式和四则运算
1)基本求导公式
2)求导的四则运算法则
3)常见函数的构造方法
- f(x) · f’(x) ⇒ 1/2 · [f2(x)]’
- f’(x) / f(x) ⇒ [ln|f(x)|]’
- f’(x) · g(x) + g’(x) · f(x) ⇒ [f(x) · g(x)]’
- f’(x) · g(x) - g’(x) · f(x) ⇒ [f(x) / g(x)]’
- f’(x) + f(x) ⇒ [ex · f(x)]’
- f’(x) - f(x) ⇒ [e-x · f(x)]’
2. 复合函数求导
已知 y = f(u) , u = φ(x) ,有:dy / dx = (dy / du) · (du / dx) = f’[φ(x)] · φ’(x)
例题:
【注】:有时不是分段函数,也要用到导数定义来求导。
3. 分段函数求导
分段函数的可导性及导函数的连续性问题。
(1)分段点外:直接用公式求导;
(2)分段点上:利用导数定义;利用导数极限定理(注意条件)。