一、导数的概念
1. 凑导数定义式
凑导数定义式计算导数或证明导数存在。
【注】:f(x) 在 x = x0 处可导时,f’(x0) 定义式上的分子需为:一个动点+一个不动点。
若为两个动点,则无法推出f(x) 在 x = x0 处可导。
例题:(与微分方程进行结合)
【注】:
2. 可导性证明
函数 f(x) 在某点可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。
定理:若函数 f(x) 在 x0 处可导,则必在点 x0 处连续。
上述定理说明:
(1)函数可导则函数连续;
(2)函数连续不一定可导;
(3)不连续的函数一定不可导。
【总结】:在一元函数中,可导 = 可微;可导必连续,但是连续不一定可导。
【注】:函数 f(x) 在某区间内有定义,且 limx→zf(x) = y ,不能推出函数 f(x) 在 x = z 处连续,即 f(z) 不一定等于 y 。
3. F(x) = f(x)·|x - a|(求函数的不可导点)
-
f(x) = |x| 在 x = 0 处不可导
-
F(x) = f(x)·|x| 在 x = 0 处可导的充分必要条件是:f(0) = 0
-
F(x) = f(x)·|x - a| 在 x = a 处可导的充分必要条件是:f(a) = 0
例题:
【注】:
- f(x) = (x - a)2 · |x - a| 在 x = a 处的最高阶导数为:2 (即 2 阶可导,3 阶导数不存在);
f(x) = (x - a)3 · |x - a| 在 x = a 处的最高阶导数为:3 (即 3 阶可导,4 阶导数不存在);
f(x) = (x - a)n · |x - a| 在 x = a 处的最高阶导数为:n (即 n 阶可导,n + 1 阶导数不存在)。
4. f(x) 与 |f(x)|
f(x) 与 |f(x)| 的可导关系:
-
f(x) 可导与 |f(x)| 可导不能互推
-
若 f(x0) ≠ 0 ,则 f(x) 在 x0 处可导 ⇔ |f(x)| 在 x0 处也可导(在值不为 0 处,可导性一样)
-
若 f(x0) = 0 且 f’(x0) = 0 ,则在 x0 处可导 ⇔ |f(x)| 在 x0 处也可导
-
若 f(x) 在 x0 处可导,则 |f(x)| 在 x0 处不可导的充要条件是:f(x0) = 0 且 f’(x0) ≠ 0
5. 总结
-
f(x) 在 x0 处连续 ⇒ f(x) 在 x0 的领域内有定义
-
f(x) 在 x0 处可导 ⇒ f(x) 在 x0 处连续 ⇒ f(x) 在 x0 的领域内有定义
-
f(x) 在 x0 处二阶可导
⇒ f’’(x) 在 x0 处有定义
⇒ f’(x) 在 x0 处可导
⇒ f(x) 在 x0 处连续 -
f(x) 在 x0 的领域内可导 ⇒ f(x) 在 x0 的领域内连续 ⇒ f’(x) 在 x0 的领域内有定义
-
函数 f(x) 可导 ⇒ 函数 f(x) 连续 =/=> 导函数 f’(x) 连续
-
几个重要结论:
例题:
【注】:二阶可导 ⇒ 一阶导数连续
6. Δx , Δy 与 dx , dy
若函数 f(x) 可微,则当 Δx → 0 时,有:
- dy = f’(x0)·Δx = 微分 = 线性主部
- Δy = f(x0 + Δx) - f(x0) = f’(x0)·Δx + o(Δx) = dy + o(Δx)
微分(dy)的几何意义:切线增量
例题:
设函数 f(u) 可导,y = f(x2) 当自变量 x 在 x = -1 处取得增量 Δx = -0.1 时,相应的函数增量 Δy 的线性主部为 0.1 ,则 f’(1) = ? 【1/2】
【解析】:Δy 的线性主部 dy = f’(x2)·2x·dx = f’(x2)·2x·Δx ,
当自变量 x 在 x = -1 处取得增量 Δx = -0.1 时 dy = 0.1 ,有:
0.1 = f’(1)·(-2)·(-0.1) ,推出 f’(1) = 0.5
二、导数的计算
1. 求导公式和四则运算
1)基本求导公式
2)求导的四则运算法则
3)常见函数的构造方法
- f(x) · f’(x) ⇒ 1/2 · [f2(x)]’
- f’(x) / f(x) ⇒ [ln|f(x)|]’
- f’(x) · g(x) + g’(x) · f(x) ⇒ [f(x) · g(x)]’
- f’(x) · g(x) - g’(x) · f(x) ⇒ [f(x) / g(x)]’
- f’(x) + f(x) ⇒ [ex · f(x)]’
- f’(x) - f(x) ⇒ [e-x · f(x)]’
2. 复合函数求导
已知 y = f(u) , u = φ(x) ,有:dy / dx = (dy / du) · (du / dx) = f’[φ(x)] · φ’(x)
例题:
【注】:有时不是分段函数,也要用到导数定义来求导。
3. 分段函数求导
分段函数的可导性及导函数的连续性问题。
(1)分段点外:直接用公式求导;
(2)分段点上:利用导数定义;利用导数极限定理(注意条件)。
【注】:导数极限定理(要用必须验证条件):若函数 f(x) 在 x = x0 处连续,且在 x0 的去心邻域上可导,且 limx→x0f’(x) = A(或∞),则 f’(x0) = limx→x0f’(x) = A(或∞)。
4. 隐函数求导
(1)标志:设 y = f(x) 由方程 F(x, y) = 0 确定
(2)方法:方程 F(x, y) = 0 两边对自变量 x 求导
(3)注意:y 中有 x
【定理】:隐函数存在定理 1
设函数 F(x, y) 在 (x0, y0) 点的某一邻域内有连续的偏导数,且:F(x0, y0) = 0 ,Fy(x0, y0) ≠ 0 ,则方程 F(x, y) = 0 在 (x0, y0) 点的某一邻域内恒能确定一个连续且具有连续导数的函数 y = f(x) ,它满足条件 y0 = f(x0) ,并有:
dy / dx = - Fx / Fy
5. 反函数求导
6. 对数求导
幂指函数、连乘连除、开方乘方,可以两边取 ln 处理。
7. 参数方程求导
8. 变限积分求导
三、高阶导数的总结
高阶导数求法很多,可以利用:常见函数的高阶导数、莱布尼茨公式、递推公式、幂级数展开、数学归纳法等方法。
1. 归纳法(找规律)
利用数学归纳法
2. 公式法
1)公式代入法
常见函数的高阶导数公式如下图所示:
【注】:
① 三角函数型:如果函数是三角函数,利用 “倍角公式” 或 “积化和差公式” 对三角函数进行降次,降成一次,然后套用结论。
② 因式分解型:如果函数是有理分式,将分母次数降成一次,然后套用结论。
2)莱布尼茨公式
【一些结论】:
3. 泰勒公式法
主要解决 fn(x0) 的问题,其中 x0 是一个数。例如:fn(0) 、fn(1) 。
利用泰勒展开式,求 fn(0) :
(1)将 f(x) 展开成多项式,即:f(x) = a0 + a1x + a2x2 +……+ anxn +……
(2)对应系数相等,求出 fn(0)
-
因为 f(x) = f(0) + f’(0)x + f”(0)x2/2! +……+ f(n)(0)xn/n! +…… ;
-
所以 f(n)(0)/n! = an ;
-
解得 fn(0) = ann! 。
【注】:
四、极值点与拐点
1. 单调性
若函数 f(x) 在区间 I 上 f’(x) > 0 ,则 f(x) 在区间 I 上严格单调增加;若函数 f(x) 在区间 I 上 f’(x) < 0 ,则 f(x) 在区间 I 上严格单调减少。
【注】:
-
上述定理中区间 I ,是开区间、闭区间、邻域或无穷区间均适用。
-
若函数 f(x) 在区间 I 上 f’(x) ≥ 0 ,且 f’(x) 不在任何子区间内恒取等号,则 f(x) 在区间 I 上仍严格单调增加;若函数 f(x) 在区间 I 上 f’(x) ≤ 0 ,且 f’(x) 不在任何子区间内恒取等号,则 f(x) 在区间 I 上仍严格单调减少。
-
若可导函数 f(x) 在区间 I 内单调增加(或单调减少),则对 ∀ x ∈ I ,有 f’(x) ≤ 0(或 f’(x) ≤ 0)。
2. 极值
充分性:条件 ⇒ 结论;必要性:结论 ⇒ 条件。
极值的第一充分条件的核心在于:f’(x) 在 x0 两侧异号
【注】:若 f’(x) 在 x0 两侧异号,但 f(x) 在 x0 处不连续,此时也未必取极值。
【总结】:一阶导变号,二阶导不为零。
驻点(Stationary Point,又称为平稳点、稳定点或临界点):是函数的一阶导数为 0 的点。
-
极值点可能在:① 驻点(f’(x) = 0);② 不可导点。
-
极值点不一定是驻点,且驻点也不一定是极值点(还需要进行进一步的判定)。
-
极值点处不一定 f’(x0) = 0(即驻点),且 f’(x0) = 0 处不一定是极值点。
-
注意区分 f’(x0) > 0 和 f’(x) > 0 。f’(x0) > 0 是一点大于 0 ,没有单调性;而 f’(x) > 0 是恒大于 0 。
3. 最值
设 x0 为 f(x) 定义域内一点,若对于 f(x) 的定义域内任意一点,均有 f(x) < f(x0) ,则 f(x0) 为 f(x) 的最大值。
【注】:
-
极值不一定是最值;最值也不一定是极值。
若在区间 I 上 x0 是最值点,且不是端点,则 x0 也是极值点(最值 + 不在端点 = 极值)。 -
求函数 f(x) 在区间 [a, b] 上的最大值和最小值的方法:(一定有最值)
(1)求出 f(x) 在区间 (a, b) 内的极值(求驻点、不可导点处的函数值);
(2)求 f(x) 在区间端点处的函数值;
(3)比较上述函数值的大小。 -
求函数 f(x) 在区间 (a, b) 上的最大值和最小值的方法:(不一定有最值)
(1)求出 f(x) 在区间 (a, b) 内的极值(求驻点、不可导点处的函数值);
(2)求 f(x) 在区间端点处的极限值;
(3)比较上述函数值的大小。
4. 凹凸性
1)定义(用中点定义)
2)充分条件
-
若在 (a, b) 内 f’’(x) < 0 ,则曲线 y = f(x) 在 [a, b] 上是凸的;
-
若在 (a, b) 内 f’’(x) > 0 ,则曲线 y = f(x) 在 [a, b] 上是凹的。
【注】:若 y = f(x) 在 [a, b] 上是凸的,则在 (a, b) 内 f’’(x) ≤ 0 ;
若 y = f(x) 在 [a, b] 上是凹的,则在 (a, b) 内 f’’(x) ≥ 0 。
5. 拐点
拐点的可疑点:f’’(x) = 0 和 f’’(x) 不存在(不可导)的点。
【总结】:二阶导变号,三阶导不为零。
【注】:可导点不能同时为极值点和拐点,但不可导点可能同时为极值点和拐点。
6. 做题技巧
-
利用极值点和拐点的定义,或利用极值点和拐点的第一、二、三充分条件。
-
利用保号性(脱帽法:当 x → x0 时,若 limf(x) > 0,则在 x0 的去心领域内 f(x) > 0)。
-
常规判定:
极值点 --> 一阶导变号,二阶导不为零。
拐点 --> 二阶导变号,三阶导不为零。 -
多项式的技巧总结:
【注】:
极值点 --> f’ 中所有的 xnum + 奇数重根(一阶导变号);
拐点 --> f’’ 中所有的 xnum + 奇数重根(二阶导变号)。 -
含绝对值的判定:绝对值的本质是分段函数,且绝对值 ≥ 0 。
-
隐函数 F(x, y) 求极值的步骤:
(1)对 x 求导,令 y’ = 0 ,解出 y = … ;
(2)回代,解出 x = x0 ,y = y0 ,该点(即 (x0, y0))为极值点;
(3)二次求导,将 (x0, y0) 代入,其中 y’(x0) = 0 ,解出 y’’ = a ,若 a > 0 ,则 (x0, y0) 为极小值点;若 a < 0 ,则 (x0, y0) 为极大值点。 -
有时不一定能解出 x0 = 0 ,但可以利用 “零点定理” 证明有根,再利用 “单调性” 证明仅有一根。
7. 根据图像判断极值点和拐点个数
-
根据 f’(x) 图形,判断函数 f(x) 的极值点个数:找出 f’(x) 正负值区间的分界点。
-
根据 f’’(x) 图形,判断曲线 y = f(x) 的拐点个数:找出 f’’(x) 正负值区间的分界点。
-
根据 f’(x) 图形,判断曲线 y = f(x) 的拐点个数:f’(x) 递减对应 f’’(x) ≤ 0 对应凸弧;f’(x) 递增对应 f’’(x) ≥ 0 对应凹弧,然后找出的凹、凸弧分界点。
-
函数 |g(x)| 的性态:先画出函数 g(x) 的图像,将 g(x) 位于横轴下面的部分翻折上来就是函数 |g(x)| 的图像。
五、渐近线、切线与曲率
1. 渐近线
简记为:水 y 垂 x 。
【做题技巧】:
-
若函数 f(x) 可表示为 f(x) = ax + b + α(x) ,其中 limx→+∞α(x) = 0 ,直线 y = ax + b 是曲线 y = f(x) 在 x → +∞ 方向上的斜渐近线。
-
若函数 f(x) 可表示为 f(x) = ax + b + α(x) ,其中 limx→-∞α(x) = 0 ,直线 y = ax + b 是曲线 y = f(x) 在 x → -∞ 方向上的斜渐近线。
-
做题步骤:
(1)找垂直渐近线;
(2)令 x → ∞ ,找水平 / 斜渐近线。
奇函数的斜渐近线:斜率相同,截距相反;
偶函数的斜渐近线:斜率相反,截距相同。
2. 切线与法线
题目类型:一般函数、隐函数、参数方程和极坐标方程。
【注】:法线斜率是切线斜率的负倒数。
3. 曲率与曲率半径
曲率是“弯曲程度的度量”。
几何意义:曲率越大,则弯曲程度越大(曲线越弯),则曲率圆越小。
计算公式:
(1)曲率 k
(2)曲率半径 R = 1 / k
(3)曲率圆:(x - x0)2 + (y - y0)2 = R2
【注】:(x2)3/2 = √(x2)3 = √(x6) = |x| 。
六、方程的根
含参数方程的根的做题步骤:
(1)分离参数;
(2)注意定义域;
(3)求导画图。
做题技巧:
-
零点定理 + 单调性:证明函数存在根。
-
罗尔原话(罗尔定理的推论):若 f(n)(x) = 0 至多有 k 个根(≤ k),则 f(x) = 0 至多有 k + n 个根(≤ k + n)。
即:若 n 阶导不为 0 ,则f(x) = 0 最多有 n 个实根。
七、不等式的证明
1. 利用单调性
做法:移项 — 构造函数 — 求导。
构造函数并利用函数单调性,最基本的思路是:欲证 α(x) > β(x) ,则构造辅助函数 f(x) = α(x) - β(x) ,证明 f(x) > 0 。
常用方法:
-
常数变量化构造函数:若不等式没有变量 x ,全是常量,则把某一常量统一换成 x 。
-
常数分离构造函数:将不等式等价变形成 f(b) > f(a)(b > a)的形式,再证明 f(x) 单调递增。
【拓展】:
处理:
-
去分母:同乘;
-
去指数:取对数;
-
奇偶性(区间通常是对称的);
例如,证明某偶函数在区间 (-a, a) 上满足某不等式,只需证该偶函数在区间 [0, a) 上满足该不等式即可,根据偶函数的性质,该偶函数在区间 (-a, 0) 上也满足该不等式。 -
分区间(很重要的思想);
例如,证明:(x2 - 1) · lnx ≥ (x - 1)2 (x > 0) 。
可以分区间:当 x ≥ 1 时,(x + 1) · lnx ≥ (x - 1) ;当 0 < x < 1 时,(x + 1) · lnx ≤ (x - 1) 。再构造函数进行证明。
【拓展】:k ≥ 2ln2 - 1 ,证明:(x - 1) · (x - ln2x + 2klnx - 1) ≥ 0 。
思想:分区间。当 x ≥ 1 时证明 (x - ln2x + 2klnx - 1) ≥ 0 ;当 0 < x < 1 时证明 (x - ln2x + 2klnx - 1) ≤ 0 。
- 常见不等式:
在 (0, π/2) 上有 (2/π)x < sinx < x < tanx ;
在 x > 0 上有 x/(1+x) < ln(1+x) < x < ex-1 。
2. 利用泰勒公式
3. 利用凹凸性
凹函数的切线在曲线下方:当 x ≠ x0(切点)时,有 f(x) > f(x0) + f’(x0)(x - x0) 。
4. 利用拉格朗日中值定理
公式:[f(b) - f(a)] / (b - a) = f’(ξ)(a < ξ < b)
5. 利用中值问题的构造方法
八、中值定理
1. 费马定理
设 f(x) 在点 x0 处可导,并取得极值,则 f’(x0) = 0 。
2. 导数零点定理
-
零点定理:设 f(x) 在 [a, b] 上连续,f(a) · f(b) < 0 ,则 ∃ ξ ∈ (a, b) ,使得 f(ξ) = 0 。
-
导数零点定理:设 f(x) 在 [a, b] 上可导,f’+(a) · f’-(b) < 0 ,则 ∃ ξ ∈ (a, b) ,使得 f’(ξ) = 0 。
3. 罗尔定理求中值问题
罗尔定理:设 f(x) 满足在 [a, b] 上连续,在 (a, b) 内可导,f(a) = f(b) ,则存在 ξ ∈ (a, b) ,使得 f’(ξ) = 0 。
1)中值证明题(找原函数的技巧)
“广义化思想” 很重要!(■’ + ▲■ = 0)
I、原函数法:
II、微分方程法:
(只需要将通解化成 F(x) = C 这样的式子)
III、构造通法:
常见构造原函数的总结:
【注】:
- f’(ξ) + g(ξ) · f(ξ) = 0 :令 F(x) = f(x) · e∫g(x)dx 。
① ~ ⑥:都属于 f’(ξ) + g(ξ) · f(ξ) = 0 的形式(广义化思想)。
【f’(ξ) + g(ξ) · f(ξ) = 0 的步骤要点】:移项化 0 ;f’(x) 前分离干净(前面系数为 1 );广义化思想(对于二阶导数、积分等)。
-
f’(ξ) + g(ξ) · f(ξ) = Q(ξ) :令 F(x) = f(x) · e∫g(x)dx - ∫Q(x) · e∫g(x)dxdx 。
-
乘积求导(方程配平):
⑦:去分母后移项得到 (f(x) - f(a)) · g’(x) + f’(x) · (g(x) - g(b)) = 0 ⇒ (f(x) - f(a)) · (g(x) - g(b))’ + (f(x) - f(a))’ · (g(x) - g(b)) = 0 ⇒ F(x) = (f(x) - f(a)) · (g(x) - g(b)) ;
⑧:f(x) · ∫g(t)dt + ∫f(t)dt · g(x) = 0 ⇒ (∫f(t)dt)’ · ∫g(t)dt + ∫f(t)dt · (∫g(t)dt)’ = 0 ⇒ F(x) = ∫f(t)dt · ∫g(t)dt 。 -
积分还原:
⑨:去分母后移项得到 g(x) · f’’(x) - f(x) · g’’(x) = 0 ⇒ F(x) = ∫[g(x) · f’’(x) - f(x) · g’’(x)]dx = g(x) · f’(x) - f(x) · g’(x) 。 -
ln 还原:[lnf(x)]’ = f’(x) / f(x) ,原理还是积分还原。
⑩:移项得到 [f’(x) / f(x)] - [2 / x] = 0 ⇒ [lnf(x)]’ - [lnx2]’ = {ln[f(x) / x2]}’ = 0 ,令 F(x) = f(x) / x2 。
为什么 [ln■]’ = 0 要令 F(x) = ■ 而不是 F(x) = ln■ ?
【答】:[ln■]’ = ■’ / ■ = 0 ,由于 ■ ≠ 0 ,则有 ■’ = 0 ,所以令 F(x) = ■ 。
-
添项减项:凑成 ■’ + ■ = 0 的形式。
(11):f’’(ξ) - f(ξ) = [f’’(ξ) - f’(ξ)] + [f’(ξ) - f(ξ)] = 0 ,又转换为 f’(ξ) + g(ξ) · f(ξ) = 0 的形式;
(12):f’’’(ξ) - f’(ξ) = [f’’’(ξ) - f’’(ξ)] + [f’’(ξ) - f’(ξ)] = 0 ,又转换为 f’(ξ) + g(ξ) · f(ξ) = 0 的形式。 -
记忆:
(13):见到 f’ · f ,令 F(x) = f2(x)(推导:∫f’(x)·f(x)dx = ∫f(x)df(x) = 1/2·f2(x));
(14):见到 f’ / f ,令 F(x) = lnf(x)(推导:∫f’(x)/f(x)dx = ∫df(x)/f(x) = lnf(x))。
IV、万能构造在不等式和极限中的应用:
V、推广的罗尔定理:
VI、两次构造辅助函数
VII、新旧函数转换:
有时候,根据结论构造出的新函数利用不上条件,这个时候可以考虑将旧函数的条件转换成新函数的条件(如何实现转换?反解旧函数!)
VIII、常数 K 值法:
(处理中值部分可分离的中值问题)
2)综合题的证明思路
① 证明 ■ = 0 :
-
罗尔定理:找原函数;
设 f(x) 满足在 [a, b] 上连续,在 (a, b) 内可导,f(a) = f(b) ,则存在 ξ ∈ (a, b) ,使得 f’(ξ) = 0 。 -
零点定理:找两点异号。
设函数 f(x) 在闭区间 [a, b] 上连续,且 f(a) 与 f(b) 异号(即 f(a)·f(b) < 0),则在开区间 (a, b) 内 f(x) 至少有一个零点,即至少有一点 ξ(a < ξ < b)使得 f(ξ) = 0 。
② 证明 f’’ = 0 :
- 找 3 点 f 相等;
- 找 2 点 f’ 相等;
- 找 2 点 f 相等 + 1 点 f’ 相等。
③ 所使用的证明工具:
- 推广的积分中值定理;
第一中值定理:
推广的第一中值定理:
-
介值定理;
若函数 f(x) 在闭区间 [a, b] 上连续,则 f(x) 在 [a, b] 可取到介于最小值 m 与最大值 M 之间的任何值。 -
极限的保号性;
-
|a ± b| ≤ |a| + |b| 。
4. 拉格朗日定理与柯西中值定理
1)拉格朗日中值定理求极限
【总结】:f(b) - f(a) = f’(ξ) · (b - a)
-
f’(ξ) → 不为 0 的数时,可用拉格朗日中值定理求极限;
例如:求 limx→0[sin2x - sinx] / x = limx→0[cosξ · (2x - x)] / x = 1 。 -
f’(ξ) → 0 时,需要分情况讨论:f’(ξ) → 0 且 a 与 b 不等价时,不可用拉格朗日中值定理求极限。
例如:求 limx→0[cos2x - cosx] / x2 = limx→0[-sinξ · (2x - x)] / x2 ,无法继续计算。
2)单中值证明题
I、中值部分可分离的中值问题:
(这类问题除了常数 K 值法,还可以运用柯西中值定理来做)
【注】:双中值证明题(不要求 ξ ≠ η ,属于 “假” 双中值问题)
II、多次运用柯西中值定理:
III、拉格朗日中值定理的几何意义:
3)双中值证明题(要求 ξ ≠ η ,分成两个区间)
I、方法一:
II、方法二:
III、方法三:
【注】:
5. 泰勒中值定理
1)运用泰勒中值定理求解中值问题
方法总结:
-
类型一:证明 f’’’(ξ) = A
技巧:由泰勒展开式得到 f’’’(ξ1) + f’’’(ξ2) = 2A ,由介值定理得 2f’’’(ξ) = 2A(其中 ξ ∈ [ξ1, ξ2]),即证。 -
类型二:证明 maxa≤x≤bf’’(x) ≥ A
技巧:由泰勒展开式得到 f’’(ξ1) 和 f’’(ξ2) ,分 a ≤ x ≤ c 和 c<x ≤ b 的情况,取 f’’(ξ) = max{f’’(ξ1), f’’(ξ2)} 。 -
类型三:证明 |f’’’(ξ)| ≥ A(需要用到公式:|a ± b| ≤ |a| + |b| )
技巧:由泰勒展开式得到 f’’’(ξ1) 和 f’’’(ξ2) ,由不等式公式得 |f’’’(ξ1) ± f’’’(ξ2)| ≤ |f’’’(ξ1)| + |f’’’(ξ2)| ,令 M = max{|f’’’(ξ1)|, |f’’’(ξ2)|} = |f’’’(ξ)| ,有 |f’’’(ξ1)| + |f’’’(ξ2)| ≤ 2M = 2|f’’’(ξ)| 。
【注】:
2)利用泰勒中值定理求中值极限
6. 其他方法
1)多项式拟合法(牛顿插值法)
【牛顿插值法的详解】:
例题:
2)利用分部积分公式