一、微分方程的基本概念
【注】:解中独立常数的个数 = 微分方程阶数 ; 微分方程通解 ≠ 全部解。
二、一阶微分方程
1. 可分离变量方程
【技巧】:
-
直接可分离:y’ = f(x)·g(y) ⇒ dy/dx = f(x)·g(y) ⇒ dy/g(y) = f(x)·dx
-
换元后可分离(变量代换后化为可分离变量方程):y’ = f(ax+by+c) ⇒ dy/dx = f(ax+by+c)
-
换元后可分离(变量代换后化为齐次方程)
【例题】:求微分方程 dy = sin(x+y+100)dx 的通解。
【解析】:令 u = x+y+100 ,有 du/dx = 1+(dy/dx) ,推出 du/dx = 1+sin(u) ,
即 du/[1+sin(u)] = dx ,两边同时积分得到 tan(u)-sec(u) = x+C ,
回代得到通解为 tan(x+y+100)-sec(x+y+100) = x+C 。
2. 齐次型微分方程
【总结】:
-
类型:dy/dx = f(y/x)
-
解法:令 u = y/x ,y = u·x ,dy/dx = u+x·(du/dx) ,代入原方程,再按可分离变量微分方程求解
-
进阶:dx/dy = f(x/y)
3. 一阶线性微分方程
【总结】:
-
类型:y’ + p(x)·y = Q(x)
-
解法:y = e-∫p(x)dx · [∫Q(x)·e∫p(x)dxdx + C]
-
推导:e∫p(x)dx·y’ + e∫p(x)dx·p(x)·y = Q(x)·e∫p(x)dx ⇒ e∫p(x)dx·y = ∫Q(x)·e∫p(x)dxdx + C
-
注意:若出现 y = e-∫(1/x)dx · [∫Q(x)·e∫(1/x)dxdx + C] ,其中 ∫(1/x)dx = lnx ,无需加绝对值
4. 伯努利方程
【总结】:
-
类型:y’ + p(x)·y = Q(x)·yn(n ≠ 0, 1)
-
技巧:作变量代换将伯努利方程化一阶线性微分方程。
-
解法:左右两端同时除以 yn ,得到 y’·y-n + p(x)·y1-n = Q(x) ,
再令 z = y1-n ,有 dz/dx = (1-n)·y-n·dy/dx ,
则原方程可化为 dz/dx + (1-n)·p(x)·z = (1-n)·Q(x) ,
由通解公式 z = e-∫(1-n)·p(x)·dx · [∫(1-n)·Q(x)·e∫(1-n)·p(x)·dxdx + C] ,回代之后得 y 。
5. 注意
【总结】:
-
观察等式两边次数,若次数一致,则两边同除后可按 “齐次型微分方程” 处理;
-
若次数不一致,则写成 dy/dx 的形式,观察是否可以分离成 f(x)·g(y) ,若可以,则按 “可分离变量方程” 处理;
-
若无法分离,则按 “一阶线性微分方程” 进行处理,找出 p(x) 和 Q(x) ,代入公式。
6. 做题技巧(恒等变形)
1)互换 x 和 y 的地位
【要点】:因变量自变量颠倒,将 ▲ 变成 ▼ 的形式(从 “头轻脚重” 变为 “头重脚轻” ,反客为主)。
【例题】:
-
求微分方程 y’ = y/[x+(y+1)2](y 不为常函数)的通解。
预处理后得到 (dx/dy) - (1/y)·x = (y+1)2/y ,得出 p(y) = -(1/y) ;Q(y) = (y+1)2/y ,
代入公式 x = e-∫p(y)dy · [∫Q(y)·e∫p(y)dydy + C] ,得到答案为 x = y·[y+2·ln|y|+(1/y)+C] -
求微分方程 ydx + (x-3y2)dy = 0 的通解。
预处理后得到 (dx/dy) + (1/y)·x = 3y ,得出 p(y) = (1/y) ;Q(y) = 3y ,
代入公式 x = e-∫p(y)dy · [∫Q(y)·e∫p(y)dydy + C] ,得到答案为 x = (1/y) · (y3+C)
【拓展】:
2)乘积求导、方程配平
【例题】:
- 微分方程 x·y’ + y = 0 满足条件 y(1) = 1 的解是?
可知 (xy)’ = 0 ,即 xy = C ,y = C/x ,把 y(1) = 1 代入得到 C = 1 ,因此解为 y = 1/x
该方法利用了乘积求导,是一种更快速的做题方法,但仅适用于部分题目。
3)整体换元
【要点】:形如 φ’(y)·y’ + p(x)·φ(y) = Q(x) 的形式,需要利用换元技巧(找到真正的 “y” ),令 u = φ(y) ,有 du/dx = φ’(y)·(dy/dx) 。
【例题】:
-
求微分方程 y’ = (y2-x)/[2y·(x+1)] 的通解。
预处理后得到 (2y·y’) - y2/(x+1) = -x/(x+1) ,令 u = y2 ,有 du/dx = 2y·(dy/dx) ,
代入原式即为 (du/dx) - u/(x+1) = -x/(x+1) ,得出 p(x) = -1/(x+1) ;Q(x) = -x/(x+1) -
求微分方程 y’·sec2y + [x/(1+x2)]·tany = x 的通解。
令 u = tany ,有 du/dx = sec2y·(dy/dx) ,
代入原式即为 (du/dx) - [x/(1+x2)]·u = x ,得出 p(x) = [x/(1+x2)] ;Q(x) = x
4)同乘转换
【要点】:一般一阶线性微分方程的形式为 y’ + p(x)·y = Q(x) ,若方程中没有 y 该怎么办?这时候就需要利用两边同乘的办法。
例如:y’ + p(x) = Q(x)·e-y ,两边同乘 ey 得到 ey·y’ + ey·p(x) = Q(x) ,即 (ey)’ + ey·p(x) = Q(x) 。再代入公式即可:ey = e-∫p(x)dx · [∫Q(x)·e∫p(x)dxdx + C]
【例题】:
-
求微分方程 y’ + 1 = e-y·sinx 的通解。
两边同乘 ey 得到 ey·y’ + ey = sinx ,此时 p(x) = 1 ;Q(x) = sinx
代入公式得到 ey = e-∫1dx · [∫sinx·e∫1dxdx + C] = e-x·[(e-x/2)·(sinx-cosx)+C] -
求微分方程 y’ - (1/x) = e-y 的通解。
两边同乘 ey 得到 ey·y’ - (1/x)·ey = 1 ,此时 p(x) = -(1/x) ;Q(x) = 1
代入公式得到 ey = e∫(1/x)dx · [∫e-∫(1/x)dxdx + C] = x·(ln|x|+C)
5)作自变量的代换求变换后方程
6)全微分方程
三、二阶微分方程
1. 二阶线性微分方程求解
1)可降阶的高阶微分方程
① 形如 y(n)(x) = f(x) 的方程:
方法:方程两边连续积分 n 次可得通解
② 不显含 x 方程:形如 y’’ = f(y, y’)
方法:令 y’ = p ,有 y’’ = p·(dp/dy) 再回代
③ 不显含 y 的方程:形如 y’’ = f(x, y’)
方法:令 y’ = p ,有 y’’ = p’ 再回代
【总结】:可降阶的二阶微分方程
2)二阶常系数齐次线性微分方程
【拓展】:n 阶常系数齐次线性微分方程解的形式
【例题】:
-
y’’ + y’ - 2y = 0
特征方程为 λ2 + λ - 2 = 0 ,特征根为 λ1 = -2 , λ2 = 1
通解为 y = C1·ex + C2·e-2x(其中 C1 , C2 为常数) -
y’’ - 2y’ + y = 0
特征方程为 λ2 - 2λ + 1 = 0 ,特征根为 λ1 = λ2 = 1
通解为 y = (C1 + C2x)·ex(其中 C1 , C2 为常数) -
y’’ + 2y’ + 5y = 0
特征方程为 λ2 + 2λ + 5 = 0 ,特征根为 λ = -1 ± 2i
通解为 y = e-x·(C1·cos2x + C2·sin2x)(其中 C1 , C2 为常数)
3)二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微分方程:y’’ + p·y’ + q·y = f(x)(其中 p, q 为常数,f(x) 是一个自由项)
【方法】:
-
求对应的齐次方程 y’’ + p·y’ + q·y = 0 的通解 Y(x)
-
用待定系数法求出非齐次方程 y’’ + p·y’ + q·y = f(x) 的一个解 y*(x)
-
写出非齐次方程的通解 y = Y(x) + y*(x)
【注】:求非齐次方程的一个解的步骤
-
当自由项 f(x) = eαx·Pn(x) 时,特解设为 y*(x) = eαx·Qn(x)·xk
(1)eαx 照抄;
(2)Qn(x) 为 x 的 n 次多项式;
(3)当 α 不是特征根时 k = 0 、当 α 是单特征根时 k = 1 、当 α 是二重特征根时 k = 2 。 -
当自由项 f(x) = eαx·[Pm(x)·cosβx+Pn(x)·sinβx] 时,特解设为 y*(x) = eαx·[Rl(1)(x)·cosβx+Rl(2)(x)·sinβx]·xk
(1)eαx 照抄;
(2)l = max{m, n} ,Rl(1)(x) 和 Rl(2)(x) 分别为 x 的两个不同的 l 次多项式;
(3)当 α±βi 不是特征根时 k = 0 、当 α±βi 是特征根时 k=1 。
【拓展】:n 阶常系数非齐次线性微分方程解的形式
【例题】:
-
y’’ - y’ - 2y = (2x - 1)·ex
特征方程为 λ2 - λ - 2 = 0 ,特征根为 λ1 = 2 , λ2 = -1
自由项 f(x) = (2x - 1)·ex ,特解为 y* = (Ax + B)·ex(其中 A , B 为常数) -
y’’ + y’ - 2y = (2x + 3)·ex
特征方程为 λ2 + λ - 2 = 0 ,特征根为 λ1 = -2 , λ2 = 1
自由项 f(x) = (2x + 3)·ex ,特解为 y* = (Ax + B)·ex·x(其中 A , B 为常数) -
y’’ + 2y’ + y = (x2 - 1)·e-x
特征方程为 λ2 + 2λ + 1 = 0 ,特征根为 λ1 = λ2 = -1
自由项 f(x) = (x2 - 1)·e-x ,特解为 y* = (Ax2 + Bx + C)·e-x·x2(其中 A , B , C 为常数) -
y’’ - 2y’ + 5y = cos(2x)·ex
特征方程为 λ2 - 2λ + 5 = 0 ,特征根为 λ = 1 ± 2i
自由项 f(x) = cos(2x)·ex ,特解为 y* = [A·cos(2x) + B·sin(2x)]·ex·x(其中 A , B 为常数) -
y’’ - 2y’ + 5y = cos(2x)·(-e-x)
特征方程为 λ2 - 2λ + 5 = 0 ,特征根为 λ = 1 ± 2i
自由项 f(x) = cos(2x)·(-e-x) ,特解为 y* = [A·cos(2x) + B·sin(2x)]·e-x(其中 A , B 为常数) -
y’’ - 2y’ + 2y = cosx
特征方程为 λ2 - 2λ + 2 = 0 ,特征根为 λ = 1 ± i
自由项 f(x) = cosx ,特解为 y* = A·cosx + B·sinx(其中 A , B 为常数)
2. 微分方程解的结构
1)齐次线性微分方程解的结构
2)非齐次线性微分方程解的结构
3)线性微分方程解的叠加原理
【总结】:
【例题】:
-
y’’ - 4y’ + 8y = (1 + cos2x)·e2x
特征方程为 λ2 - 4λ + 8 = 0 ,特征根为 λ = 2 ± 2i
自由项 f(x) = (1 + cos2x)·e2x = e2x + cos2x·e2x
特解为 y* = C·e2x + [A·cos(2x) + B·sin(2x)]·e2x·x(其中 A , B , C 为常数) -
y’’ + y = x2 + 1 + sinx
特征方程为 λ2 + 1 = 0 ,特征根为 λ = ±i
自由项 f(x) = x2 + 1 + sinx = (x2 + 1) + sinx
特解为 y* = (Ax2 + Bx + C) + (D·cosx + E·sinx)·x(其中 A , B , C , D , E 为常数)
3. 已知解反求方程
1)常系数线性微分方程
常系数线性微分方程:根据常系数线性微分方程解的特点
① 已知齐次解,求原方程:
【例题】:以 y = C1·ex + C2·cos2x + C3·sin2x(C1 , C2 , C3 为任意常数)为通解的微分方程为?(答案:y’’’ - y’’ + 4y’ - 4y = 0 )
【解析】:可知 λ1 = 1 ,λ2 = ±2i ⇒ (λ - 1)·(λ2 + 4) = 0 ⇒ λ3 - λ2 + 4λ - 4 = 0 。
② 已知非齐次解,求原方程:
【例题】:已知微分方程 y’’ + a·y’ + b·y = c·ex 的通解为 y = (C1 + C2·x)·e-x + ex ,求 a, b, c 的值。
【解析】:可知 λ1 = λ2 = -1 ,特征方程为 (λ+1)2 = 0 ⇒ λ2 + 2λ + 1 = 0 ⇒ a = 2 , b = 1 ;
通过 y 算出 y’ 和 y’’ ,代入微分方程中求出 c = 4 。
2)变系数线性微分方程
不是常系数线性微分方程的其他方程:消去任意常数
比如通解是 y = C1r(x) + C2t(x)(1)
对两边同时求导得到 y’ = C1r’(x) + C2t’(x)(2)和 y’’ = C1r’’(x) + C2t’’(x)(3)
联立(2)式和(3)式,由 “克拉默法则” 可解出 C1 和 C2 ,再代入(1)式即可。
① 题目给出方程形式:代通解求 p ,代特解求 q
【例题】:若 y1 = (1+x2)2 - √(1+x2) , y2 = (1+x2)2 + √(1+x2) 是微分方程 y’’ + p(x)·y = q(x) 的两个解,则 q(x) = ?
【解析】:y = √(1+x2) 是微分方程 y’’ + p(x)·y = 0 的一个解 ⇒ p(x) = -x/(1+x2),
y = (1+x2)2 是微分方程 y’’ - [x/(1+x2)]·y = q(x) 的一个解 ⇒ q(x) = 3x·(1+x2) 。
② 题目未给方程形式:求非齐通解,求导消 C ,构造方程
【例题】:
-
以 y = x2 - ex 和 y = x2 为特解的一阶非齐次线性微分方程为?
该一阶非齐次线性微分方程的通解为 y = C·ex + x2 ,
求导可得 y’ = C·ex + 2·x ⇒ y’ - y = 2·x - x2 -
已知 y1 = 3 , y2 = 3 + x2 , y3 = 3 + ex 是某二阶线性非齐次方程的三个特解,求该微分方程及通解。
该二阶线性非齐次方程的通解为 y = C1·x2 + C2·ex + 3 ,
可得 y’ = 2C1·x + C2·ex ,y’’ = 2C1 + C2·ex
⇒ (2x - x2)·y’’ + (x2 - 2)·y’ + 2·(1 - x)·y = 6·(1 - x)
四、微分算子法(选学)
非齐次微分方程求通解的步骤:
(1)求 “齐次” 通解;
(2)求 “非齐次” 特解:① 待定系数法 、② 微分算子法。
y’’ + p·y’ + q·y = f(x) 利用 “微分算子法” 求特解
注:下述 D 表示 “求导” ,1/D 表示 “积分” 。
1. f(x)=ekx(自由项为指数函数)
当自由项是指数函数时,求特解的方法是:见 D 就换 k 。
其中 D 表示 y’ 、D2 表示 y’’ ,而 k 为指数函数中 x 前的系数。
【方法】:方程为 a·y’’ + b·y’ + c·y = t·ekx ,则 y* = [1/(a·D2+b·D+c)] · (t·ekx) ,
再将 D = k 代入 y* ,得到 y* = [1/(a·k2+b·k+c)] · (t·ekx) 。
1)分母不为 0
【例题】:求非齐次微分方程 y’’ - 4·y’ + 3·y = 2·e2x 的特解(k = 2)
答:k = 2 ,将 2 代入 D 中,有:y* = [1/(D2-4·D+3)] · (2·e2x) = [1/(4-8+3)] · (2·e2x) = -2·e2x
2)分母为 0
思考:若将 k 代入 D 时使得分母为 0 该怎么办?
解答:分母为 0 ,一提一导。即将 1/(a·D2+b·D+c) 变为 x · [1/(2·a·D+b)] 。
【例题】:
(1)求非齐次微分方程 y’’ + 2·y’ - 3·y = e-3x 的特解(k = -3)
该题若按公式求解,则有:y* = [1/(D2+2·D-3)] · e-3x = [1/(9-6-3)] · e-3x ,此时分母为 0 ;
需要进行一次 “一提一导” ,有:y* = x · [1/(2·D+2)] · e-3x 。
答:y* = [1/(D2+2·D-3)] · e-3x = x · [1/(2·D+2)] · e-3x = x · [1/(-6+2)] · e-3x = -(1/4)·x·e-3x
(2)求非齐次微分方程 y’’ + 4·y’ + 4·y = e-2x 的特解(k = -2)
该题若按公式求解,则有:y* = [1/(D2+4·D+4)] · e-2x = [1/(4-8+4)] · e-2x ,此时分母为 0 ;
进行一次 “一提一导”,有:y* = x · [1/(2·D+4)] · e-2x = x · [1/(-4+4)] · e-2x ,此时分母仍为 0 ;
则再进行一次 “一提一导”,有:y* = x2 · (1/2) · e-2x 。
答:y* = [1/(D2+4·D+4)] · e-2x = x · [1/(2·D+4)] · e-2x = x2 · (1/2) · e-2x
2. f(x)=sin(αx) 或 cos(αx)(自由项为三角函数)
当自由项是三角函数时,求特解的方法是:见 D2 就换 -α2 。
其中 D 表示 y’ 、D2 表示 y’’ ,1/D 表示 ∫ ,而 α 为三角函数中 x 前的系数。
【方法】:方程为:a·y’’ + b·y’ + c·y = t·sin(αx) ,则 y* = [1/(a·D2+b·D+c)] · [t·sin(αx)] ,再将 D2 = -α2 代入 y* 。
注:① 有 D2 就先换 (-α2) ;② 处理 1/(1-D) 用平方差公式(即 1/(1-D) = (1+D)/(1-D2) )。
【例题】:
(1)求非齐次微分方程 y’’ - y = sinx 的特解(-α2 = -1)
答:y* = [1/(D2-1)] · sinx = -(1/2)·sinx
(2)求非齐次微分方程 y’’ + 4·y = cos(2x) 的特解(-α2 = -4)
答:y* = [1/(D2+4)] · cos(2x) = x · [1/(2·D)] · cos(2x) = (1/2) · ∫x·cos(2x)dx = (1/4) · [x·sin(2x) + (1/2)·cos(2x)]
(3)求非齐次微分方程 y’’ - 6·y’ + 9·y = cosx 的特解(-α2 = -1)
答:y* = [1/(D2-6D+9)] · cosx = (1/2) · [(4+3D)/(16-9D)] · cosx = (1/50) · (4+3D) · cosx = (2/25)·cosx + (3/50)·(cosx)’ = (2/25)·cosx - (3/50)·sinx
3. f(x)=Pn(x)(自由项为幂函数)
I、等比数列法:类比 a + a·q + a·q2 + a·q3 + …… + a·qn-1 = [a/(1-q)] · (1-qn) ,有:1/(1-D) = 1 + D + D2 + D3 +……(逆向思维,我们需要做的是拼凑 1-D 的形式)
II、泰勒展开:1/(1-x) = 1 + x + x2 + x3 + ……
III、长除法:利用长除法算 1 / (1+D) ,需要注意的是 (1+D) 中 1 必须写在 D 前。
【例题】:
(1)求非齐次微分方程 y’’ + y = -2·x 的特解
答:y* = [1/(D2+1)] · (-2·x) = {1/[(1-(-D2)]} · (-2·x) = (1-D2) · (-2x) = -2·x
(2)求非齐次微分方程 y’’ + y’ = x2 的特解
答:y* = [1/(D2+D)] · x2 = (1/D) · {1/[(1-(-D)]} · x2 = (1/D) · (1-D+D2) · x2 = (1/D) · (x2-2·x+2) = (1/3)·x3 - x2 +2·x
使用长除法:
4. f(x)=ekx·y(x)(指数函数×三角函数or幂函数)
【原理】:[1/F(D)] · ekx · y(x) = ekx · [1/F(D+K)] · y(x) ,然后利用 “移心大法” ,把指数移到最左边,根据 y(x) 的类型(三角函数 or 幂函数)进行下一步的操作。
-
若 y(x) 是三角函数,则 D2 = -α2 ;
-
若 y(x) 是幂函数,则利用 “等比数列/泰勒展开” 或 “长除法” 对 1/F(D+K) 进行处理。
【例题】:求非齐次微分方程 y’’ - 3·y’ + 2·y = e-x·cosx + 2·x·ex 的特解
答:y* = [1/(D2-3·D+2)]·e-x·cosx + [1/(D2-3·D+2)]·2·x·ex
= e-x·{1/[(D-1)2-3·(D-1)+2]}·cosx + ex·{1/[(D+1)2-3·(D+1)+2]}·2·x(利用公式)
= e-x·[1/(D2-5·D+6)]·cosx + ex·(1/D)·[1/(D-1)]·2·x(根据 y(x) 进行处理)
= e-x·[1/(5-5·D)]·cosx - ex·(1/D)·(1+D)·2·x
= (e-x/10)·(1+D)·cosx - ex·(1/D)·(2·x+2) = (e-x/10)·(cosx-sinx) - ex·(x2+2·x)
5. f(x)=Pn(x)·sin(αx)(幂函数×三角函数)
比较复杂,感兴趣的可以自行去 b 站找视频学习。
五、微分方程解的性质
1. 求积分
【方法】:
-
若微分方程的解在 (0, +∞) 上有界,则 x → +∞ 时需要 eλ·x → 0 ,即 λ < 0 ;
-
若微分方程的解在 (-∞, 0) 上有界,则 x → -∞ 时需要 eλ·x → 0 ,即 λ > 0 ;
-
若微分方程的解在 (-∞, +∞) 上有界,则 x → +∞ 且 x → -∞ 时都需要 eλ·x → 0 ,即 λ = 0 。
【例题】:若函数 f(x) 满足 f’’(x) + a·f’(x) + f(x) = 0(a > 0),且 f(0) = m , f’(0) = n ,则 ∫0+∞f(x)dx = ?
【解析】:
-
f(x) 的特征方程为 λ2 + a·λ + 1 = 0 ,通解为 y = C1·eλ1·x + C2·eλ2·x 有 y’ = C1·λ1·eλ1·x + C2·λ2·eλ2·x
-
根据韦达定理有:λ1·λ2 = c/a = 1 、λ1+λ2 = -b/a = -a < 0 ⇒ λ1 < 0 且 λ2 < 0
-
f’’(x) + a·f’(x) + f(x) = 0 ⇒ f(x) = - f’’(x) - a·f’(x)
-
∫0+∞f(x)dx = [- f’(x) - a·f(x)]|0+∞ = - f’(+∞) - a·f(+∞) + f’(0) + a·f(0)
-
由(1)(2)可知 f’(+∞) = f(+∞) = 0 ,再由(4)得到 ∫0+∞f(x)dx = m + a·n
【注】:可以看出反常积分 ∫0+∞f(x)dx 是收敛的。
上题中若 Δ = b2 - 4ac = a2 - 4 > 0 , 则通解 y = C1·eλ1·x + C2·eλ2·x(λ1≠λ2);
若 Δ = a2 - 4 = 0 , 则通解 y = (C1+C2·x) · eλ·x ;
若 Δ = a2 - 4 < 0 , 则通解 y = [C1·cos(βx) + C2·sin(βx)] · eα·x 。
下面再举几个例子:
(1)若微分方程 y’’ + a·y’ + b·y = 0 的解在 (-∞, +∞) 上有界,则 a, b 的取值应该满足什么条件?
答:特征方程为 λ2 + a·λ + b = 0 ,由韦达定理得 λ1·λ2 = c/a = b 、λ1+λ2 = -b/a = -a 。要使微分方程的解在 (-∞, +∞) 上均有界,则 x → +∞ 且 x → -∞ 时都需要 eλ·x → 0 。
-
有 Δ = a2 - 4·b < 0 , λ = [-a±√(4·b-a2)·i] / 2 = -a/2 ± [√(4·b-a2)/2]·i(写成 α±βi 的形式);
-
则 y = e-a/2·[C1·cos{[√(4·b-a2)/2]·x} + C2·sin{[√(4·b-a2)/2]·x}] ;
-
由题意可得 a = 0 ,再根据 a2 - 4·b < 0 可知 b > 0 。
(2)若二阶常系数齐次微分方程 y’’ + a·y’ + b·y = 0 的解在 (-∞, +∞) 上均有周期性,则 a, b 的取值应该满足什么条件?
答:a = 0 且 b > 0 。解析和上题一致。
指数函数 e+∞ | 三角函数 | |
---|---|---|
有界性 | × | √ |
周期性 | × | √ |
2. 求极限
【方法】:写通解 + 求极限。
注:通解可以写成定积分 ∫0x 的形式,这样才可以使用洛必达法则。
【例题】:设 y(x) 是微分方程 y’ + a·y = f(x) 的解(a > 0),若有 limx→+∞f(x) = b ,则 limx→+∞y(x) = ?
【解析】:
-
y(x) = e-∫a·dx · [∫0x f(t)·e∫a·dt dt + C] = [∫0x f(t)·ea·t dt + C] / eax(把 eax 放在分母)
-
有:limx→+∞y(x) = limx→+∞[∫0x f(t)·ea·t dt + C] / eax= limx→+∞(f(x)·ea·x) / (a·eax)(洛必达法则)= limx→+∞f(x) / a = b/a
同类题:
设 f(x) 在 [0, +∞) 上连续且有水平渐近线 y = b ≠ 0 ,则:当 a > 0 时,y’ + a·y = f(x) 的任意解都满足 limx→+∞y(x) = b/a 。
进阶题:
难点:
① 想不到令 y’(x) + y(x) = f(x) ;
② 想不到将 limx→+∞[y’(x) + y(x)] = k 的条件转换为 limx→+∞f(x) = k 。
3. 周期性
【方法】:周期性一般是需要证明 y(x) = y(x+T) ,需要注意的是与求极限一样,通解可以写成定积分 ∫0x 的形式。
【例题】:已知微分方程 y’ + y = f(x) ,其中 f(x) 是 R 上的连续函数,若 f(x) 是周期为 T 的函数,证明:方程存在唯一的以 T 为周期的解。
【解析】:
-
y(x) = e-x·[∫0x f(t)·et dt + C] ,有:y(x+T) = e-(x+T)·[∫0x+T f(t)·et dt + C] ,需证明 y(x) = y(x+T)
-
进一步调整化简有 y(x+T) = e-x·[e-T·∫0T f(t)·et dt + e-T·∫TT+x f(t)·et dt + e-T·C]
-
对 ∫TT+x f(t)·et dt 进行换元:∫TT+x f(t)·et dt = ∫0x f(t+T)·et+T dt = ∫0x f(t)·et+T dt
-
y(x+T) = e-x·[e-T·∫0T f(t)·et dt + e-T·∫0x f(t)·et+T dt + e-T·C] = e-x·[e-T·∫0T f(t)·et dt + ∫0x f(t)·et dt + e-T·C](与 y(x) = e-x·[∫0x f(t)·et dt + C] 进行对比)
-
当且仅当 C = e-T·∫0T f(t)·et dt + e-T·C 时方程存在唯一的以 T 为周期的解,推出 C = ∫0T f(t)·et dt / (eT - 1)
六、微分方程的综合题
1. 几何应用
2. 微分方程与积分方程
(对积分方程两边求导消去积分符号,往往可化为微分方程)
【例题】:设 f(x) 连续,且满足 ∫0x f(t) dt = x + ∫0x t·f(x-t) dt ,求 f(x)
【解析】:
-
令 u = x - t ,有 ∫0x t·f(x-t) dt = ∫0x (x-u)·f(u) du = x·∫0x f(u) du - ∫0x u·f(u) du ,则有 ∫0x f(t) dt = x + x·∫0x f(t) dt - ∫0x t·f(t) dt ;
-
两边同时求导得 f(x) - ∫0x f(t) dt = 1 ,推出 f(0) = 1 ;
-
再次两边求导得 f’(x) = f(x) ,即 f(x) = C·ex ,又因为 f(0) = 1 ,有 f(x) = ex 。
3. 微分方程与导数结合
微分方程与函数方程:某些函数方程可以转化成微分方程
【例题】:设 f(x) 可导,对任意实数 x, y 满足 f(x+y) = ex·f(y) + ey·f(x) ,且 f’(0) = e ,求 f(x) 。
【解析】:
-
当 x = 0 且 y = 0 时有:f(0) = 2·f(0) ,则有 f(0) = 0 ;
-
f’(x) = limΔx→0[f(x+Δx)-f(x)] / Δx = limΔx→0[ex·f(Δx)+(eΔx-1)·f(x)] / Δx = {limΔx→0[ex·f(Δx)] / Δx} + {limΔx→0[(eΔx-1)·f(x)] / Δx} = ex+1 + f(x) ;
-
已知 f’(x) - f(x) = ex+1 ,得到 f(x) = ex·[∫ ex+1·e-x dx + C] = ex · (e·x+C) ,又因为 f(0) = 0 ,C = 0 ,f(x) = ex+1 · x 。
再举一个例子:
4. 变量替换
【例题】:
(1)利用变换 u = ex ,求微分方程 y’’ - (2ex+1)·y’ + e2x·y = e3x 的通解。
解析:
I、du = ex·dx = u·dx
II、dy/dx = (dy/du)·(du/dx) = u·(dy/du)
III、d2y/dx2 = d(dy/dx)/dx = [d(dy/dx)/du]·(du/dx) = u·[d(dy/dx)/du] = u·{d[u·(dy/du)]/du} = u·(dy/du) + u2·(d2y/du2)
-
将 dy/dx = u·(dy/du) 、d2y/dx2 = u·(dy/du) + u2·(d2y/du2) 代入微分方程得到:y’’(u) - 2·y’(u) + y(u) = u ;
-
求齐次微分方程通解:λ2 - 2·λ + 1 = 0 ,得到 λ = 1 ,通解为 y = (C1+C2·u) · eu ;
-
求非齐次微分方程特解:y* = [1/(D2-2·D+1)]·u = (1+2D)·u = u+2 ;
-
得到非齐次微分方程通解为:y = (C1+C2·u) · eu + u + 2 ,再将 u = ex 替换回去即可,其中 C1 、C2 为任意常数。
(2)利用变量替换 x = sin(t) 、y = y(t)(0 < t < π/2)化简方程 (1-x2)·(d2y/dx2) - x·(dy/dx) + y = 0 ,并求该方程的通解。
解析:
-
t = arcsin(x) ,dt = [1/√(1-x2)]·dx = sec(t)·dx ,dy/dx = (dy/dt)·(dt/dx) = sec(t)·(dy/dt) ,d2y/dx2 = d(dy/dx)/dx = [d(dy/dx)/dt] · (dt/dx) = sec2(t)·[tan(t)·(dy/dt)+(d2y/dt2)] ;
-
将 dy/dx = sec(t)·(dy/dt) 、d2y/dx2 = sec2(t)·[tan(t)·(dy/dt)+(d2y/dt2)] 代入微分方程得到:y’’(t) + y(t) = 0 ;
-
求齐次微分方程通解:λ2 + 1 = 0 ,得到 λ = ±i ,通解为 y = C1·cos(t) + C2·sin(t) = C1·cos[arcsin(x)] + C2·sin[arcsin(x)] = C1·cos[√(1-x2)] + C2·x ,其中 C1 、C2 为任意常数。
上述(2)中已知 sin2t + cos2t = 1 ,有 cos2t = 1 - sin2t = 1 - x2 ,从而有 cos(t) = √(1-x2) 。
5. 微分方程与偏微分方程
(某些偏微分方程可以转化成微分方程)
① 第一种类型:由于因变量的特殊性,偏微分方程可以变成微分方程
② 第二种类型:将其中一个变量视为常数,可按照微分方程进行求解