数据预处理

1. 数据预处理的目的

1)去除无效数据、不规范数据、错误数据

2)补齐缺失值

3)对数据范围、量纲、格式、类型进行统一化处理,更容易进行后续计算

2. 预处理方法

1)标准化(均值移除)

让样本矩阵中的每一列的平均值为0,标准差为1. 如有三个数a, b, c,则平均值为:

m = ( a + b + c ) / 3 a ′ = a − m b ′ = b − m c ′ = c − m m = (a + b + c) / 3 \\ a' = a - m \\ b' = b - m \\ c' = c - m m=(a+b+c)/3a=amb=bmc=cm
预处理后的平均值为0:
( a ′ + b ′ + c ′ ) / 3 = ( ( a + b + c ) − 3 m ) / 3 = 0 (a' + b' + c') / 3 =( (a + b + c) - 3m) / 3 = 0 (a+b+c)/3=((a+b+c)3m)/3=0
预处理后的标准差: s = s q r t ( ( ( a − m ) 2 + ( b − m ) 2 + ( c − m ) 2 ) / 3 ) s = sqrt(((a - m)^2 + (b - m)^2 + (c - m)^2)/3) s=sqrt(((am)2+(bm)2+(cm)2)/3)

a ′ ′ = a / s a'' = a / s a=a/s

b ′ ′ = b / s b'' = b / s b=b/s

c ′ ′ = c / s c'' = c / s c=c/s

s ′ ′ = s q r t ( ( ( a ′ / s ) 2 + ( b ′ / s ) 2 + ( c ′ / s ) 2 ) / 3 ) s'' = sqrt(((a' / s)^2 + (b' / s) ^ 2 + (c' / s) ^ 2) / 3) s=sqrt(((a/s)2+(b/s)2+(c/s)2)/3)

KaTeX parse error: Double superscript at position 11: =sqrt((a' ^̲ 2 + b' ^ 2 + c…

= 1 =1 =1

标准差:又称均方差,是离均差平方的算术平均数的平方根,用σ表示 ,标准差能反映一个数据集的离散程度

代码示例:

# 数据预处理之:均值移除示例
import numpy as np
import sklearn.preprocessing as sp

# 样本数据
raw_samples = np.array([
    [3.0, -1.0, 2.0],
    [0.0, 4.0, 3.0],
    [1.0, -4.0, 2.0]
])
print(raw_samples)
print(raw_samples.mean(axis=0))  # 求每列的平均值
print(raw_samples.std(axis=0))  # 求每列标准差

std_samples = raw_samples.copy()  # 复制样本数据
for col in std_samples.T:  # 遍历每列
    col_mean = col.mean()  # 计算平均数
    col_std = col.std()  # 求标准差
    col -= col_mean  # 减平均值
    col /= col_std  # 除标准差

print(std_samples)
print(std_samples.mean(axis=0))
print(std_samples.std(axis=0))

我们也可以通过sklearn提供sp.scale函数实现同样的功能,如下面代码所示:

std_samples = sp.scale(raw_samples) # 求标准移除
print(std_samples)
print(std_samples.mean(axis=0))
print(std_samples.std(axis=0))

2)范围缩放

将样本矩阵中的每一列最小值和最大值设定为相同的区间,统一各特征值的范围.如有a, b, c三个数,其中b为最小值,c为最大值,则:
a ′ = a − b a' = a - b a=ab

b ′ = b − b b' = b - b b=bb

c ′ = c − b c' = c - b c=cb

缩放计算方式如下公式所示:

a ′ ′ = a ′ / c ′ a'' = a' / c' a=a/c

b ′ ′ = b ′ / c ′ b'' = b' / c' b=b/c

c ′ ′ = c ′ / c ′ c'' = c' / c' c=c/c

计算完成后,最小值为0,最大值为1.以下是一个范围缩放的示例.

# 数据预处理之:范围缩放
import numpy as np
import sklearn.preprocessing as sp

# 样本数据
raw_samples = np.array([
    [1.0, 2.0, 3.0],
    [4.0, 5.0, 6.0],
    [7.0, 8.0, 9.0]]).astype("float64")

# print(raw_samples)
mms_samples = raw_samples.copy()  # 复制样本数据

for col in mms_samples.T:
    col_min = col.min()
    col_max = col.max()
    col -= col_min
    col /= (col_max - col_min)
print(mms_samples)

我们也可以通过sklearn提供的对象实现同样的功能,如下面代码所示:

# 根据给定范围创建一个范围缩放器对象
mms = sp.MinMaxScaler(feature_range=(0, 1))# 定义对象(修改范围观察现象)
# 使用范围缩放器实现特征值范围缩放
mms_samples = mms.fit_transform(raw_samples) # 缩放
print(mms_samples)

执行结果:

[[0.  0.  0. ]
 [0.5 0.5 0.5]
 [1.  1.  1. ]]
[[0.  0.  0. ]
 [0.5 0.5 0.5]
 [1.  1.  1. ]]

3)归一化

反映样本所占比率.用每个样本的每个特征值,除以该样本各个特征值绝对值之和.变换后的样本矩阵,每个样本的特征值绝对值之和为1.例如如下反映编程语言热度的样本中,2018年也2017年比较,Python开发人员数量减少了2万,但是所占比率确上升了:

年份Python(万人)Java(万人)PHP(万人)
201710205
20188101

归一化预处理示例代码如下所示:

# 数据预处理之:归一化
import numpy as np
import sklearn.preprocessing as sp

# 样本数据
raw_samples = np.array([
    [10.0, 20.0, 5.0],
    [8.0, 10.0, 1.0]
])
print(raw_samples)
nor_samples = raw_samples.copy()  # 复制样本数据

for row in nor_samples:
    row /= abs(row).sum()  # 先对行求绝对值,再求和,再除以绝对值之和

print(nor_samples) # 打印结果

在sklearn库中,可以调用sp.normalize()函数进行归一化处理,函数原型为:

sp.normalize(原始样本, norm='l2')
# l1: l1范数,除以向量中各元素绝对值之和
# l2: l2范数,除以向量中各元素平方之和

使用sklearn库中归一化处理代码如下所指示:

nor_samples = sp.normalize(raw_samples, norm='l1')
print(nor_samples) # 打印结果

4)二值化

根据一个事先给定的阈值,用0和1来表示特征值是否超过阈值.以下是实现二值化预处理的代码:

# 二值化
import numpy as np
import sklearn.preprocessing as sp

raw_samples = np.array([[65.5, 89.0, 73.0],
                        [55.0, 99.0, 98.5],
                        [45.0, 22.5, 60.0]])
bin_samples = raw_samples.copy()  # 复制数组
# 生成掩码数组
mask1 = bin_samples < 60
mask2 = bin_samples >= 60
# 通过掩码进行二值化处理
bin_samples[mask1] = 0
bin_samples[mask2] = 1

print(bin_samples)  # 打印结果

同样,也可以利用sklearn库来处理:

bin = sp.Binarizer(threshold=61) # 创建二值化对象(注意边界值)
bin_samples = bin.transform(raw_samples) # 二值化预处理
print(bin_samples)

二值化编码会导致信息损失,是不可逆的数值转换.如果进行可逆转换,则需要用到独热编码.

5)独热编码

根据一个特征中值的个数来建立一个由一个1和若干个0组成的序列,用来序列对所有的特征值进行编码.例如有如下样本:
[ 1 3 2 7 5 4 1 8 6 7 3 9 ] \left[ \begin{matrix} 1 & 3 & 2\\ 7 & 5 & 4\\ 1 & 8 & 6\\ 7 & 3 & 9\\ \end{matrix} \right] 171735832469
对于第一列,有两个值,1使用10编码,7使用01编码

对于第二列,有三个值,3使用100编码,5使用010编码,8使用001编码

对于第三列,有四个值,2使用1000编码,4使用0100编码,6使用0010编码,9使用0001编码

编码字段,根据特征值的个数来进行编码,通过位置加以区分.通过独热编码后的结果为:
$$
\left[

\begin{matrix}

10 & 100 & 1000\\

01 & 010 & 0100\\

10 & 001 & 0010\\

01 & 100  & 0001\\

\end{matrix}

\right]
$$
使用sklearn库提供的功能进行独热编码的代码如下所示:

# 独热编码示例
import numpy as np
import sklearn.preprocessing as sp

raw_samples = np.array([[1, 3, 2],
                        [7, 5, 4],
                        [1, 8, 6],
                        [7, 3, 9]])

one_hot_encoder = sp.OneHotEncoder(
    sparse=False, # 是否采用稀疏格式
    dtype="int32",
    categories="auto")# 自动编码
oh_samples = one_hot_encoder.fit_transform(raw_samples) # 执行独热编码
print(oh_samples)

print(one_hot_encoder.inverse_transform(oh_samples)) # 解码

执行结果:

[[1 0 1 0 0 1 0 0 0]
 [0 1 0 1 0 0 1 0 0]
 [1 0 0 0 1 0 0 1 0]
 [0 1 1 0 0 0 0 0 1]]
 
[[1 3 2]
 [7 5 4]
 [1 8 6]
 [7 3 9]]

6)标签编码

根据字符串形式的特征值在特征序列中的位置,来为其指定一个数字标签,用于提供给基于数值算法的学习模型.代码如下所示:

# 标签编码
import numpy as np
import sklearn.preprocessing as sp

raw_samples = np.array(['audi', 'ford', 'audi',
                        'bmw','ford', 'bmw'])

lb_encoder = sp.LabelEncoder() # 定义标签编码对象
lb_samples = lb_encoder.fit_transform(raw_samples) # 执行标签编码
print(lb_samples)

print(lb_encoder.inverse_transform(lb_samples)) # 逆向转换

执行结果:

[0 2 0 1 2 1]
['audi' 'ford' 'audi' 'bmw' 'ford' 'bmw']
  • 10
    点赞
  • 85
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值