数据预处理

均值移除出实例

# 均值移除:对每列特征进行变换,变换后均值为0
#          标准差为1(数据分布更加规范)
# 样本数据
import numpy as np
import sklearn.preprocessing as sp

raw_sample = np.array([[3.0, -1.0, 2.0],
                       [0.0, 4.0, 3.0],
                       [1.0, -4.0, 2.0]])
std_sample = raw_sample.copy()  # 复制样本
for col in std_sample.T:  # T表示转置,遍历每列
    col_mean = col.mean()  # 计算每列均值
    col_std = col.std()  # 计算每列标准均差
    col -= col_mean  # 每个数字减去标准差
    col /= col_std  # 每个数字除以标准差
print(std_sample)  # 打印均值移除后的数据
print(std_sample.mean(axis=0))  # 打印方向均值
print(std_sample.std(axis=0))  # 打印方向标准差

print("############################")
# 利用sklearn提供的API实现
std_sample = sp.scale(raw_sample)  # 均值移除
print(std_sample)  # 打印均值移除后的数据
print(std_sample.mean(axis=0))  # 打印方向均值
print(std_sample.std(axis=0))  # 打印方向标准差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值