二阶线性微分方程的通解与特解
二阶线性微分方程的一般形式为:
a ( x ) y ′ ′ + b ( x ) y ′ + c ( x ) y = f ( x ) a(x)y'' + b(x)y' + c(x)y = f(x) a(x)y′′+b(x)y′+c(x)y=f(x)
其中,a(x), b(x), c(x) 为系数函数,f(x) 为非齐次项。
1. 齐次方程 (f(x) = 0):
当 f(x) = 0 时,方程变为齐次方程:
a ( x ) y ′ ′ + b ( x ) y ′ + c ( x ) y = 0 a(x)y'' + b(x)y' + c(x)y = 0 a(x)y′′+b(x)y′+c(x)y=0
其通解的形式依赖于特征方程的根:
令 y = e r x y = e^{rx} y=erx,代入齐次方程,得到特征方程:
a r 2 + b r + c = 0 ar^2 + br + c = 0 ar2+br+c=0
- 情况一:特征方程有两个不相等的实根 r₁ 和 r₂:
通解为:
y = C 1 e r 1 x + C 2 e r 2 x y = C_1e^{r_1x} + C_2e^{r_2x} y=C1er1x+C2er2x
其中,C₁ 和 C₂ 是任意常数。
- 情况二:特征方程有两个相等的实根 r:
通解为:
y = ( C 1 + C 2 x ) e r x y = (C_1 + C_2x)e^{rx} y=(C1+C2x)erx
其中,C₁ 和 C₂ 是任意常数。
- 情况三:特征方程有两个共轭复根 r = α ± βi:
通解为:
y = e α x ( C 1 cos ( β x ) + C 2 sin ( β x ) ) y = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x)) y=eαx(C1cos(βx)+C2sin(βx))
其中,C₁ 和 C₂ 是任意常数。
2. 非齐次方程 (f(x) ≠ 0):
非齐次方程的通解由齐次方程的通解 ( y h y_h yh) 和非齐次方程的一个特解 ( y p y_p yp) 组成:
y = y h + y p y = y_h + y_p y=yh+yp
-
y h y_h yh 是齐次方程的通解: 根据上述齐次方程的解法求得。
-
y p y_p yp 是非齐次方程的特解: 寻找特解的方法取决于 f(x) 的形式,常用的方法包括:
-
待定系数法: 如果 f(x) 是多项式、指数函数、正弦函数或余弦函数,或者它们的线性组合,则可以假设特解具有与 f(x) 相似的形式,然后代入原方程求解待定系数。
-
常数变易法: 对于更一般的 f(x),可以使用常数变易法。 该方法将特解表示为:
y p = u 1 ( x ) y 1 ( x ) + u 2 ( x ) y 2 ( x ) y_p = u_1(x)y_1(x) + u_2(x)y_2(x) yp=u1(x)y1(x)+u2(x)y2(x)
其中,y₁(x) 和 y₂(x) 是齐次方程的两个线性无关的解,u₁(x) 和 u₂(x) 通过求解一个线性方程组确定。
-
**
高阶线性微分方程*
*解的形式与二阶方程类似,但复杂度随着阶数的增加而增加。 关键在于理解特征方程的根及其对通解的影响。 让我们以n阶齐次线性微分方程为例:
a n ( x ) y ( n ) + a n − 1 ( x ) y ( n − 1 ) + . . . + a 1 ( x ) y ′ + a 0 ( x ) y = 0 a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = 0 an(x)y(n)+an−1(x)y(n−1)+...+a1(x)y′+a0(x)y=0
假设系数 a i ( x ) a_i(x) ai(x) 是常数,则对应的特征方程为:
a n r n + a n − 1 r n − 1 + . . . + a 1 r + a 0 = 0 a_nr^n + a_{n-1}r^{n-1} + ... + a_1r + a_0 = 0 anrn+an−1rn−1+...+a1r+a0=0
这个n次特征方程可能有n个根,这些根可以是:
-
互不相同的实根: 如果特征方程有n个互不相同的实根 r₁, r₂, …, rₙ,则齐次方程的通解为:
y = C 1 e r 1 x + C 2 e r 2 x + . . . + C n e r n x y = C_1e^{r_1x} + C_2e^{r_2x} + ... + C_ne^{r_nx} y=C1er1x+C2er2x+...+Cnernx
其中 C₁, C₂, …, Cₙ 是任意常数。
-
重复的实根: 如果特征方程有一个k重实根 r,则对应的通解部分为:
( C 1 + C 2 x + C 3 x 2 + . . . + C k x k − 1 ) e r x (C_1 + C_2x + C_3x^2 + ... + C_kx^{k-1})e^{rx} (C1+C2x+C3x2+...+Ckxk−1)erx
这意味着每个k重根贡献k个线性无关的解。
-
共轭复根: 如果特征方程有k对共轭复根 α ± βi (每个复根有重复次数m),那么对于其中一对复根,通解的部分为:
e α x ∑ j = 0 m − 1 ∑ k = 0 1 C j , k x j ( cos ( β x ) + i k sin ( β x ) ) e^{\alpha x} \sum_{j=0}^{m-1} \sum_{k=0}^{1} C_{j,k} x^j (\cos(\beta x) + i^k \sin(\beta x)) eαxj=0∑m−1k=0∑1Cj,kxj(cos(βx)+iksin(βx))
其中, C j , k C_{j,k} Cj,k 为任意常数,可以将 i k i^k ik进行展开组合,从而得到实数形式的解。 如果复根有重复次数,则需类似重复实根的处理方式,增加x的幂次。
非齐次方程:
对于n阶非齐次线性微分方程:
a n ( x ) y ( n ) + a n − 1 ( x ) y ( n − 1 ) + . . . + a 1 ( x ) y ′ + a 0 ( x ) y = f ( x ) a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + ... + a_1(x)y' + a_0(x)y = f(x) an(x)y(n)+an−1(x)y(n−1)+...+a1(x)y′+a0(x)y=f(x)
其通解仍然是齐次方程通解和非齐次方程特解之和:
y = y h + y p y = y_h + y_p y=yh+yp
其中:
y_h
是齐次方程的通解,其形式如上所述,取决于特征方程的根。y_p
是非齐次方程的特解,其求解方法与二阶方程类似,可以使用待定系数法或常数变易法。 待定系数法的选择与f(x)的形式有关,常数变易法的应用较为普遍,但计算量较大。
让我们来看几道例题,涵盖不同类型的特征根以及齐次和非齐次方程:
例题1:齐次方程,互异实根
求解微分方程:
y ′ ′ ′ − 6 y ′ ′ + 11 y ′ − 6 y = 0 y''' - 6y'' + 11y' - 6y = 0 y′′′−6y′′+11y′−6y=0
解:
特征方程为:
r 3 − 6 r 2 + 11 r − 6 = 0 r^3 - 6r^2 + 11r - 6 = 0 r3−6r2+11r−6=0
这个方程可以因式分解为:
( r − 1 ) ( r − 2 ) ( r − 3 ) = 0 (r-1)(r-2)(r-3) = 0 (r−1)(r−2)(r−3)=0
所以,特征根为 r₁ = 1, r₂ = 2, r₃ = 3。 因为是互异实根,所以通解为:
y = C 1 e x + C 2 e 2 x + C 3 e 3 x y = C_1e^x + C_2e^{2x} + C_3e^{3x} y=C1ex+C2e2x+C3e3x
其中 C₁, C₂, C₃ 为任意常数。
例题2:齐次方程,重复实根
求解微分方程:
y ′ ′ − 4 y ′ + 4 y = 0 y'' - 4y' + 4y = 0 y′′−4y′+4y=0
解:
特征方程为:
r 2 − 4 r + 4 = 0 r^2 - 4r + 4 = 0 r2−4r+4=0
这个方程可以因式分解为:
( r − 2 ) 2 = 0 (r-2)^2 = 0 (r−2)2=0
所以,特征根为 r = 2 (二重根)。 因此,通解为:
y = ( C 1 + C 2 x ) e 2 x y = (C_1 + C_2x)e^{2x} y=(C1+C2x)e2x
其中 C₁, C₂ 为任意常数。
例题3:齐次方程,共轭复根
求解微分方程:
y ′ ′ + 4 y ′ + 13 y = 0 y'' + 4y' + 13y = 0 y′′+4y′+13y=0
解:
特征方程为:
r 2 + 4 r + 13 = 0 r^2 + 4r + 13 = 0 r2+4r+13=0
使用求根公式,得到特征根为:
r = − 4 ± 16 − 4 ( 13 ) 2 = − 4 ± − 36 2 = − 2 ± 3 i r = \frac{-4 \pm \sqrt{16 - 4(13)}}{2} = \frac{-4 \pm \sqrt{-36}}{2} = -2 \pm 3i r=2−4±16−4(13)=2−4±−36=−2±3i
所以,通解为:
y = e − 2 x ( C 1 cos ( 3 x ) + C 2 sin ( 3 x ) ) y = e^{-2x}(C_1\cos(3x) + C_2\sin(3x)) y=e−2x(C1cos(3x)+C2sin(3x))
其中 C₁, C₂ 为任意常数。
例题4:非齐次方程,待定系数法
求解微分方程:
y ′ ′ − y ′ − 2 y = 4 x 2 y'' - y' - 2y = 4x^2 y′′−y′−2y=4x2
解:
-
求解齐次方程: 特征方程为 r² - r - 2 = 0,根为 r₁ = 2, r₂ = -1。 齐次方程的通解为:
y h = C 1 e 2 x + C 2 e − x y_h = C_1e^{2x} + C_2e^{-x} yh=C1e2x+C2e−x
-
求解特解: 因为 f(x) = 4x² 是一个二次多项式,我们假设特解的形式为:
y p = A x 2 + B x + C y_p = Ax^2 + Bx + C yp=Ax2+Bx+C
将 y_p 代入原方程,求解 A, B, C。 结果为:A = -2, B = -4, C = -6. 所以特解为:
y p = − 2 x 2 − 4 x − 6 y_p = -2x^2 - 4x - 6 yp=−2x2−4x−6
-
通解: 非齐次方程的通解为齐次方程通解和特解之和:
y = y h + y p = C 1 e 2 x + C 2 e − x − 2 x 2 − 4 x − 6 y = y_h + y_p = C_1e^{2x} + C_2e^{-x} - 2x^2 - 4x - 6 y=yh+yp=C1e2x+C2e−x−2x2−4x−6
让我们来看几道更复杂的例子,涉及更高阶、更复杂的特征根和非齐次项:
例题1:高阶齐次方程,重复根和复根
求解微分方程:
y ( 4 ) + 2 y ′ ′ ′ + 6 y ′ ′ + 2 y ′ + 5 y = 0 y^{(4)} + 2y''' + 6y'' + 2y' + 5y = 0 y(4)+2y′′′+6y′′+2y′+5y=0
解:
特征方程为:
r 4 + 2 r 3 + 6 r 2 + 2 r + 5 = 0 r^4 + 2r^3 + 6r^2 + 2r + 5 = 0 r4+2r3+6r2+2r+5=0
这是一个四次方程,求解比较困难。 我们可以尝试分组分解,但这里直接给出根,可以通过数值方法或因式分解软件得到: r = -1/2 ± 2i, r = -1/2 ± 2i (二重根)。
由于有二重共轭复根,通解的形式为:
y = e − x / 2 [ ( C 1 + C 2 x ) cos ( 2 x ) + ( C 3 + C 4 x ) sin ( 2 x ) ] y = e^{-x/2}[(C_1 + C_2x)\cos(2x) + (C_3 + C_4x)\sin(2x)] y=e−x/2[(C1+C2x)cos(2x)+(C3+C4x)sin(2x)]
例题2:非齐次方程,常数变易法
求解微分方程:
y ′ ′ + y = tan ( x ) y'' + y = \tan(x) y′′+y=tan(x)
解:
-
齐次方程: 特征方程 r² + 1 = 0,根为 r = ±i。 齐次方程通解为:
y h = C 1 cos ( x ) + C 2 sin ( x ) y_h = C_1\cos(x) + C_2\sin(x) yh=C1cos(x)+C2sin(x)
-
常数变易法: 设特解为:
y p = u 1 ( x ) cos ( x ) + u 2 ( x ) sin ( x ) y_p = u_1(x)\cos(x) + u_2(x)\sin(x) yp=u1(x)cos(x)+u2(x)sin(x)
根据常数变易法公式,我们需要计算:
u 1 ′ ( x ) = − f ( x ) y 2 ( x ) W ( x ) , u 2 ′ ( x ) = f ( x ) y 1 ( x ) W ( x ) u_1'(x) = -\frac{f(x)y_2(x)}{W(x)}, \quad u_2'(x) = \frac{f(x)y_1(x)}{W(x)} u1′(x)=−W(x)f(x)y2(x),u2′(x)=W(x)f(x)y1(x)
其中,f(x) = tan(x),y₁(x) = cos(x),y₂(x) = sin(x),W(x) 是由 y₁ 和 y₂ 组成的朗斯基行列式:
W ( x ) = ∣ cos ( x ) sin ( x ) − sin ( x ) cos ( x ) ∣ = cos 2 ( x ) + sin 2 ( x ) = 1 W(x) = \begin{vmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{vmatrix} = \cos^2(x) + \sin^2(x) = 1 W(x)= cos(x)−sin(x)sin(x)cos(x) =cos2(x)+sin2(x)=1
因此:
u 1 ′ ( x ) = − tan ( x ) sin ( x ) = − sin 2 ( x ) cos ( x ) = cos 2 ( x ) − 1 cos ( x ) = cos ( x ) − sec ( x ) u_1'(x) = -\tan(x)\sin(x) = \frac{-\sin^2(x)}{\cos(x)} = \frac{\cos^2(x) - 1}{\cos(x)} = \cos(x) - \sec(x) u1′(x)=−tan(x)sin(x)=cos(x)−sin2(x)=cos(x)cos2(x)−1=cos(x)−sec(x)
u 2 ′ ( x ) = tan ( x ) cos ( x ) = sin ( x ) u_2'(x) = \tan(x)\cos(x) = \sin(x) u2′(x)=tan(x)cos(x)=sin(x)积分得到:
u 1 ( x ) = sin ( x ) − ln ∣ sec ( x ) + tan ( x ) ∣ u_1(x) = \sin(x) - \ln|\sec(x) + \tan(x)| u1(x)=sin(x)−ln∣sec(x)+tan(x)∣
u 2 ( x ) = − cos ( x ) u_2(x) = -\cos(x) u2(x)=−cos(x)所以特解为:
y p = [ sin ( x ) − ln ∣ sec ( x ) + tan ( x ) ∣ ] cos ( x ) − cos ( x ) sin ( x ) = − cos ( x ) ln ∣ sec ( x ) + tan ( x ) ∣ y_p = [\sin(x) - \ln|\sec(x) + \tan(x)|]\cos(x) - \cos(x)\sin(x) = -\cos(x)\ln|\sec(x) + \tan(x)| yp=[sin(x)−ln∣sec(x)+tan(x)∣]cos(x)−cos(x)sin(x)=−cos(x)ln∣sec(x)+tan(x)∣
-
通解: 非齐次方程通解为:
y = C 1 cos ( x ) + C 2 sin ( x ) − cos ( x ) ln ∣ sec ( x ) + tan ( x ) ∣ y = C_1\cos(x) + C_2\sin(x) - \cos(x)\ln|\sec(x) + \tan(x)| y=C1cos(x)+C2sin(x)−cos(x)ln∣sec(x)+tan(x)∣
例题3:高阶非齐次方程,待定系数法的扩展
求解微分方程:
y ′ ′ ′ − y ′ ′ + y ′ − y = e x + x 2 y''' - y'' + y' - y = e^x + x^2 y′′′−y′′+y′−y=ex+x2
这个方程的解法需要结合待定系数法和特征根的分析。 因为非齐次项包含ex和x²,我们需要仔细考虑特解的形式,并处理特征根与非齐次项之间的关系(这里ex对应的r=1是特征根)。
解题思路:
-
求解齐次方程: 特征方程为 r³ - r² + r - 1 = 0,可以因式分解为 (r-1)(r² + 1) = 0,根为 r = 1, r = ±i。 齐次方程通解为:
y h = C 1 e x + C 2 cos ( x ) + C 3 sin ( x ) y_h = C_1e^x + C_2\cos(x) + C_3\sin(x) yh=C1ex+C2cos(x)+C3sin(x)
-
求解特解: 由于 ex 对应 r=1 是特征方程的单根,所以对于 ex 部分的特解,我们假设形式为 Ax²ex。 对于 x² 部分的特解,我们假设形式为 Bx² + Cx + D。 因此,特解的总形式为:
y p = A x 2 e x + B x 2 + C x + D y_p = Ax^2e^x + Bx^2 + Cx + D yp=Ax2ex+Bx2+Cx+D
-
代入求系数: 将 yp 代入原方程,比较系数,求解 A, B, C, D。 这部分计算比较繁琐,需要仔细进行。
-
通解: 将齐次方程通解和特解相加得到非齐次方程的通解。
让我们尝试一些更具挑战性的微分方程例题。这些例子将涉及更复杂的非齐次项、更高级的求解技巧,以及对结果进行更深入的分析:
例题1:高阶非齐次方程,包含Bessel函数
求解微分方程:
x 2 y ′ ′ + x y ′ + ( x 2 − 1 / 4 ) y = x 3 / 2 cos ( x ) x^2y'' + xy' + (x^2 - 1/4)y = x^{3/2}\cos(x) x2y′′+xy′+(x2−1/4)y=x3/2cos(x)
解题思路:
这个方程是Bessel方程的非齐次形式。 首先,我们需要识别出齐次方程:
x 2 y ′ ′ + x y ′ + ( x 2 − 1 / 4 ) y = 0 x^2y'' + xy' + (x^2 - 1/4)y = 0 x2y′′+xy′+(x2−1/4)y=0
这是Bessel方程,其通解可以用Bessel函数表示:
y h ( x ) = C 1 J 1 / 2 ( x ) + C 2 Y 1 / 2 ( x ) y_h(x) = C_1J_{1/2}(x) + C_2Y_{1/2}(x) yh(x)=C1J1/2(x)+C2Y1/2(x)
其中 J1/2(x) 和 Y1/2(x) 分别是半整数阶的第一类和第二类Bessel函数。
对于非齐次部分,我们需要使用常数变易法。 然而,由于Bessel函数的复杂性,计算u₁’(x) 和 u₂’(x) 会非常困难,可能需要借助数值积分或近似方法。 解析解可能难以获得。
例题2:含有奇异点的微分方程
求解微分方程 (近似解):
x y ′ ′ + ( 1 − x ) y ′ + λ y = 0 xy'' + (1-x)y' + \lambda y = 0 xy′′+(1−x)y′+λy=0
这是库默尔方程,它在x=0处有一个奇异点。 解析解可以使用库默尔函数表示,但其形式较为复杂。 对于特定值λ,我们可以通过Frobenius方法找到近似解的幂级数形式。 Frobenius方法需要假设解的形式为:
y ( x ) = ∑ n = 0 ∞ a n x n + r y(x) = \sum_{n=0}^{\infty} a_n x^{n+r} y(x)=n=0∑∞anxn+r
将此形式代入方程,并求解递归关系,确定系数an和指数r。 这个过程会很复杂,需要仔细的代数运算和求解递归关系。
例题3:非线性微分方程
求解微分方程 (数值解):
y ′ = y 2 − x y' = y^2 - x y′=y2−x
这是一个一阶非线性微分方程,没有解析解。 求解需要采用数值方法,例如:
- 欧拉方法: 这是一个简单的显式一阶方法,但精度较低。
- 龙格-库塔方法: 例如四阶龙格-库塔方法,精度更高。
- 其他高级数值方法: 对于更复杂的非线性方程,可能需要采用更高级的数值方法,例如隐式方法或自适应步长方法。
例题4:偏微分方程 (简化例子)
求解偏微分方程:
∂ u ∂ t = α ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} ∂t∂u=α∂x2∂2u
其中α为常数。
这是一个一维热传导方程。 其解法取决于边界条件和初始条件。 常用的方法包括:
- 傅里叶变换法: 将方程变换到频域,更容易求解。
- 有限差分法: 将偏微分方程离散化,转化为代数方程组求解。
- 有限元法: 将求解区域分割成单元,在每个单元上求解,精度更高。
这些例题的难度在于:
- 解的复杂性: 解析解可能不存在,或者形式非常复杂。
- 计算的复杂性: 求解过程需要进行大量的代数运算或数值计算。
- 方法的选择: 需要根据方程的类型和特性选择合适的求解方法。
解决这些问题需要对微分方程理论有深入的理解,并且熟悉各种求解技巧和数值方法。 许多情况下,仅仅得到近似解就已经足够,而获得精确的解析解可能是不可能的。