让我们详细讨论一些常见函数在 x=0 处的泰勒展开式(也称为麦克劳林展开式)。 记住,泰勒展开式是将一个函数在某一点附近用无限多项式逼近的方法。麦克劳林展开式是泰勒展开式的一个特例,即展开点为 x=0。 展开式的形式为:
f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + … f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots f(x)=n=0∑∞n!f(n)(0)xn=f(0)+f′(0)x+2!f′′(0)x2+3!f′′′(0)x3+…
其中, f ( n ) ( 0 ) f^{(n)}(0) f(n)(0) 表示函数 f(x) 在 x=0 处的 n 阶导数。
以下是一些常见函数在 x=0 处的麦克劳林展开式,以及它们的推导思路:
1. 指数函数: e x e^x ex
- 展开式: e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + … e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots ex=n=0∑∞n!xn=1+x+2!x2+3!x3+4!x4+…
- 推导: 指数函数的导数始终是自身,即 f ( n ) ( x ) = e x f^{(n)}(x) = e^x f(n)(x)=ex。因此,在 x=0 处,所有阶导数都等于 1。代入泰勒展开式公式即可得到结果。 该级数收敛于所有实数 x。
2. 正弦函数: sin x \sin x sinx
- 展开式: sin x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + … \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots sinx=n=0∑∞(2n+1)!(−1)nx2n+1=x−3!x3+5!x5−7!x7+…
- 推导: sin x \sin x sinx 的导数依次为 cos x \cos x cosx, − sin x -\sin x −sinx, − cos x -\cos x −cosx, sin x \sin x sinx… 在 x=0 处,这些导数的值依次为 1, 0, -1, 0, 1, 0, … 将这些值代入泰勒展开式,只留下奇数项,得到上述结果。该级数收敛于所有实数 x。
3. 余弦函数: cos x \cos x cosx
- 展开式: cos x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + … \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots cosx=n=0∑∞(2n)!(−1)nx2n=1−2!x2+4!x4−6!x6+…
- 推导: 类似于 sin x \sin x sinx, cos x \cos x cosx 的导数在 x=0 处的值依次为 0, -1, 0, 1, 0, -1,… 代入泰勒展开式,只留下偶数项,得到上述结果。该级数收敛于所有实数 x。
4. 自然对数: ln ( 1 + x ) \ln(1+x) ln(1+x)
- 展开式: ln ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 x n n = x − x 2 2 + x 3 3 − x 4 4 + … \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots ln(1+x)=n=1∑∞n(−1)n+1xn=x−2x2+3x3−4x4+…
- 推导: 需要计算 ln ( 1 + x ) \ln(1+x) ln(1+x) 的各阶导数,然后在 x=0 处求值。 注意,该展开式只在 -1 < x ≤ 1 的区间内收敛。
5. 几何级数: 1 1 − x \frac{1}{1-x} 1−x1
- 展开式: 1 1 − x = ∑ n = 0 ∞ x n = 1 + x + x 2 + x 3 + x 4 + … \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + x^4 + \dots 1−x1=n=0∑∞xn=1+x+x2+x3+x4+…
- 推导: 这是最简单的例子之一。可以将该式视为等比数列求和公式的极限形式。该级数只在 |x| < 1 的区间内收敛。
好的,让我们再添加几个常见函数在 x=0 处的麦克劳林展开式:
6. 反正切函数: arctan x \arctan x arctanx
- 展开式: arctan x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = x − x 3 3 + x 5 5 − x 7 7 + … \arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots arctanx=n=0∑∞2n+1(−1)nx2n+1=x−3x3+5x5−7x7+…
- 推导: 可以通过对 arctan x \arctan x arctanx 求导,得到 1 1 + x 2 \frac{1}{1+x^2} 1+x21,然后利用几何级数展开式,再积分得到 arctan x \arctan x arctanx 的展开式。 该级数在区间 [-1, 1] 上收敛。
7. 双曲正弦函数: sinh x \sinh x sinhx
- 展开式: sinh x = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + … \sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots sinhx=n=0∑∞(2n+1)!x2n+1=x+3!x3+5!x5+7!x7+…
- 推导: 双曲正弦函数定义为 sinh x = e x − e − x 2 \sinh x = \frac{e^x - e^{-x}}{2} sinhx=2ex−e−x。 利用 e x e^x ex 的麦克劳林展开式,可以推导出 sinh x \sinh x sinhx 的展开式。 该级数收敛于所有实数 x。
8. 双曲余弦函数: cosh x \cosh x coshx
- 展开式: cosh x = ∑ n = 0 ∞ x 2 n ( 2 n ) ! = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + … \cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots coshx=n=0∑∞(2n)!x2n=1+2!x2+4!x4+6!x6+…
- 推导: 双曲余弦函数定义为 cosh x = e x + e − x 2 \cosh x = \frac{e^x + e^{-x}}{2} coshx=2ex+e−x。 类似于 sinh x \sinh x sinhx,利用 e x e^x ex 的麦克劳林展开式,可以推导出 cosh x \cosh x coshx 的展开式。 该级数收敛于所有实数 x。
9. (1+x)^r (广义二项式定理):
- 展开式: ( 1 + x ) r = ∑ n = 0 ∞ ( r n ) x n = 1 + r x + r ( r − 1 ) 2 ! x 2 + r ( r − 1 ) ( r − 2 ) 3 ! x 3 + … (1+x)^r = \sum_{n=0}^{\infty} \binom{r}{n} x^n = 1 + rx + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \dots (1+x)r=n=0∑∞(nr)xn=1+rx+2!r(r−1)x2+3!r(r−1)(r−2)x3+…
- 推导: 其中 ( r n ) = r ( r − 1 ) . . . ( r − n + 1 ) n ! \binom{r}{n} = \frac{r(r-1)...(r-n+1)}{n!} (nr)=n!r(r−1)...(r−n+1) 是广义二项式系数。 当 r 为非负整数时,该展开式是有限的,对应普通的二项式定理。 当 r 为其他实数时,该级数在 |x| < 1 收敛。 这是一个非常重要的展开式,它包含了前面许多展开式作为特例 (例如,令 r=-1 得到几何级数的展开式)。
再来几个函数的麦克劳林展开式比较困难,因为许多函数的导数在x=0处计算起来很复杂,或者其展开式收敛半径很小,实用价值有限。 但是,我们可以尝试一些稍微不那么常见的,或者以不同形式呈现的例子:
10. 正割函数 (sec x):
- 展开式: sec x = 1 + x 2 2 + 5 x 4 24 + 61 x 6 720 + O ( x 8 ) \sec x = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + O(x^8) secx=1+2x2+245x4+72061x6+O(x8)
- 推导: 正割函数的导数计算比较复杂,高阶导数也越来越复杂。 这个展开式只给出了前几项,因为后续项的计算量很大。 其收敛半径为 π / 2 π/2 π/2。 需要注意的是,这里用到了大O记号 O(x⁸),表示被省略的项的阶数不低于 x⁸。
11. 余割函数 (csc x):
- 展开式: csc x = 1 x + x 6 + 7 x 3 360 + O ( x 5 ) \csc x = \frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + O(x^5) cscx=x1+6x+3607x3+O(x5)
- 推导: 类似于正割函数,余割函数在 x=0 处没有定义,但其麦克劳林展开式包含一个 1 x \frac{1}{x} x1 项,表示其在 x=0 附近有奇异性。 收敛半径为 π。
12. 以另一种形式表示的指数函数:
考虑函数 f ( x ) = e a x f(x) = e^{ax} f(x)=eax,其中 a 是一个常数。
- 展开式: e a x = ∑ n = 0 ∞ ( a x ) n n ! = 1 + a x + ( a x ) 2 2 ! + ( a x ) 3 3 ! + … e^{ax} = \sum_{n=0}^{\infty} \frac{(ax)^n}{n!} = 1 + ax + \frac{(ax)^2}{2!} + \frac{(ax)^3}{3!} + \dots eax=n=0∑∞n!(ax)n=1+ax+2!(ax)2+3!(ax)3+…
- 推导: 这只是将 e x e^x ex 的麦克劳林展开式中的 x 替换为 ax。
13. 误差函数 (erf(x)) 的近似:
误差函数是一个重要的特殊函数,没有简单的初等函数表达式。其麦克劳林展开式比较复杂,这里提供一个近似:
- 近似: e r f ( x ) ≈ 2 π ( x − x 3 3 + x 5 10 − x 7 42 + … ) erf(x) \approx \frac{2}{\sqrt{\pi}} \left( x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \dots \right) erf(x)≈π2(x−3x3+10x5−42x7+…)
- 说明: 这是误差函数的麦克劳林展开式的前几项。 完整的展开式非常复杂。
14. 正切函数 (tan x):
- 展开式: tan x = x + x 3 3 + 2 x 5 15 + 17 x 7 315 + … \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots tanx=x+3x3+152x5+31517x7+…
- 推导: 该级数通过重复求 tan x 的导数并在 x=0 处求值得到。系数会越来越复杂。该级数在 ∣ x ∣ < π 2 |x| < \frac{\pi}{2} ∣x∣<2π 的区间内收敛。需要注意的是,这个级数的收敛半径是有限的,因为 tan x 在 π/2 的奇数倍处有垂直渐近线。
15. 余切函数 (cot x):
- 展开式: cot x = 1 x − x 3 − x 3 45 − 2 x 5 945 − … \cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \dots cotx=x1−3x−45x3−9452x5−…
- 推导: 与正切函数类似,通过重复求导得到。但是,请注意 1 x \frac{1}{x} x1 项的存在,这表明在 x=0 处存在奇点(极点)。这是一个洛朗级数,而不是严格意义上的麦克劳林级数。该级数在 0 < ∣ x ∣ < π 0 < |x| < \pi 0<∣x∣<π 的区间内收敛。
16. 正割平方函数 (sec²x):
- 展开式: sec 2 x = 1 + x 2 + 2 x 4 3 + 17 x 6 45 + … \sec^2 x = 1 + x^2 + \frac{2x^4}{3} + \frac{17x^6}{45} + \dots sec2x=1+x2+32x4+4517x6+…
- 推导: 可以通过对 sec 2 x \sec^2 x sec2x 进行重复求导,或者利用 sec 2 x = 1 + tan 2 x \sec^2 x = 1 + \tan^2 x sec2x=1+tan2x 和 tan x 的麦克劳林展开式来推导。 其收敛区间为 ∣ x ∣ < π 2 |x| < \frac{\pi}{2} ∣x∣<2π。
17. 利用三角恒等式: 我们可以利用已知的三角函数展开式,结合三角恒等式来推导出其他三角函数的展开式。 例如,已知 sin x 和 cos x 的展开式,我们可以推导出 sin(2x) 的展开式:
- sin ( 2 x ) = 2 sin x cos x \sin(2x) = 2\sin x \cos x sin(2x)=2sinxcosx
通过将 sin x 和 cos x 的麦克劳林展开式代入上式,并进行乘法展开和整理,可以得到 sin(2x) 的麦克劳林展开式。
记住,这些展开式只有在其收敛区间内才有效。在实际应用中,通常只取前几项进行近似计算,需要根据精度要求选择合适的项数。