让我们分析一下在有向图中计算一个顶点入度的时间复杂度,分别使用邻接表和邻接矩阵两种表示方法。
1. 邻接表
在邻接表表示法中,每个顶点都关联一个链表,存储指向该顶点的边的信息。 要计算一个顶点的入度,我们需要遍历整个邻接表。 具体来说:
- 遍历所有顶点: 我们需要遍历图中的所有顶点 (假设有 V 个顶点)。
- 对于每个顶点: 我们需要遍历该顶点的邻接链表 (假设平均每个顶点的出度为 E/V,其中 E 是边的总数)。在遍历过程中,检查每个边的目标顶点是否等于我们想要计算入度的顶点。如果相等,则入度计数器加一。
因此,最坏情况下,我们需要遍历整个邻接表。时间复杂度为 O(V + E), 其中 V 是顶点数,E 是边数。 然而,如果我们预先计算并存储每个顶点的入度,那么查找单个顶点的入度时间复杂度就变成了 O(1)。
更准确的分析: 如果我们只关心计算一个特定顶点的入度,那么我们只需要遍历所有顶点的邻接表,检查哪些边的目标顶点指向我们感兴趣的顶点。 这需要遍历所有边,因此时间复杂度是 O(E)。 但是,如果我们已经知道目标顶点,我们可以直接查找,平均时间复杂度可能更低(取决于数据结构的实现)。
2. 邻接矩阵
在邻接矩阵表示法中,图用一个二维数组表示。matrix[i][j] = 1
表示从顶点 i 到顶点 j 有一条边,否则为 0。
要计算顶点 i 的入度,我们需要遍历邻接矩阵的第 i 列。 因为邻接矩阵是一个 V x V 的矩阵,所以我们