深度学习基于Resnet18的图像多分类--训练自己的数据集(超详细 含源码)

文章介绍了ResNet18模型的原理,包括其残差块结构。提供了使用Python进行图像分类的代码示例,训练和测试数据存储于dataset目录下的train和test文件夹,分别包含鹤、大象、豹子三个类别的图像。训练模型在预处理后的数据上达到99.95%的预测精度。代码示例中展示了如何加载数据、定义模型、训练与测试过程,并给出了使用豹子图像进行预测的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.ResNet18原理

2.文件存储 一个样本存放的文件夹为dataset 下两个文件夹 train和test文件(训练和预测)

3.训练和测试的文件要相同。下面都分别放了 crane (鹤)、elephant(大象)、leopard(豹子)

4.编写预测的Python文件:code.py 跟dataset是同级路径。

5.code.py 训练模型源代码

6. 测试代码使用豹子的图像进行分类,复制自己的绝对路径。

7.预测结果达到了99.95%

图片素材链接:https://pan.baidu.com/s/1_l0IhiXFm83f1gb_YEOVtw
提取码:8888

1.ResNet18原理

        ResNet18是一个经典的深度卷积神经网络模型,由微软亚洲研究院提出,用于参加2015年的ImageNet图像分类比赛。ResNet18的名称来源于网络中包含的18个卷积层。

ResNet18的基本结构如下:

    输入层:接收大小为224x224的RGB图像。
    卷积层:共4个卷积层,每个卷积层使用3x3的卷积核和ReLU激活函数,提取图像的局部特征。
    残差块:共8个残差块,每个残差块由两个卷积层和一条跳跃连接构成,用于解决深度卷积神经网络中梯度消失和梯度爆炸问题。
    全局平均池化层:对特征图进行全局平均池化,将特征图转化为一维

    向量。
    全连接层:包含一个大小为1000的全连接层,用于分类输出。
    输出层:使用softmax激活函数,生成1000个类别的概率分布。

2.文件存储 一个样本存放的文件夹为dataset 下两个文件夹 train和test文件(训练和预测)

3.训练和测试的文件要相同。下面都分别放了 crane (鹤)、elephant(大象)、leopard(豹子)

4.编写预测的Python文件:code.py 跟dataset是同级路径。

5.code.py 训练模型源代码

import os
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from torchvision import models, datasets, transforms
import torch.utils.data as tud
import numpy as np
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
from PIL import Image
import matplotlib.pyplot as plt
import warnings

warnings.filterwarnings("ignore")

device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
n_classes = 3  # 几种分类的
preteain = False  # 是否下载使用训练参数 有网true 没网false
epoches = 4  # 训练的轮次
traindataset = datasets.ImageFolder(root='./dataset/train/', transform=transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

]))

testdataset = datasets.ImageFolder(root='./dataset/test/', transform=transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

]))

classes = testdataset.classes
print(classes)

model = models.resnet18(pretrained=preteain)
if preteain == True:
    for param in model.parameters():
        param.requires_grad = False
model.fc = nn.Linear(in_features=512, out_features=n_classes, bias=True)
model = model.to(device)


def train_model(model, train_loader, loss_fn, optimizer, epoch):
    model.train()
    total_loss = 0.
    total_corrects = 0.
    total = 0.
    for idx, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        outputs = model(inputs)
        loss = loss_fn(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        preds = outputs.argmax(dim=1)
        total_corrects += torch.sum(preds.eq(labels))
        total_loss += loss.item() * inputs.size(0)
        total += labels.size(0)
    total_loss = total_loss / total
    acc = 100 * total_corrects / total
    print("轮次:%4d|训练集损失:%.5f|训练集准确率:%6.2f%%" % (epoch + 1, total_loss, acc))
    return total_loss, acc


def test_model(model, test_loader, loss_fn, optimizer, epoch):
    model.train()
    total_loss = 0.
    total_corrects = 0.
    total = 0.
    with torch.no_grad():
        for idx, (inputs, labels) in enumerate(test_loader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            loss = loss_fn(outputs, labels)
            preds = outputs.argmax(dim=1)
            total += labels.size(0)
            total_loss += loss.item() * inputs.size(0)
            total_corrects += torch.sum(preds.eq(labels))

        loss = total_loss / total
        accuracy = 100 * total_corrects / total
        print("轮次:%4d|训练集损失:%.5f|训练集准确率:%6.2f%%" % (epoch + 1, loss, accuracy))
        return loss, accuracy


loss_fn = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0001)
train_loader = DataLoader(traindataset, batch_size=32, shuffle=True)
test_loader = DataLoader(testdataset, batch_size=32, shuffle=True)
for epoch in range(0, epoches):
    loss1, acc1 = train_model(model, train_loader, loss_fn, optimizer, epoch)
    loss2, acc2 = test_model(model, test_loader, loss_fn, optimizer, epoch)

classes = testdataset.classes
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

path = r'C:\Users\Administrator\Desktop\动物\dataset\test\leopard\img_test_850.jpg'  # 测试图片路径
model.eval()
img = Image.open(path)
img_p = transform(img).unsqueeze(0).to(device)
output = model(img_p)
pred = output.argmax(dim=1).item()
plt.imshow(img)
plt.show()
p = 100 * nn.Softmax(dim=1)(output).detach().cpu().numpy()[0]
print('该图像预测类别为:', classes[pred])

# 三分类
print('类别{}的概率为{:.2f}%,类别{}的概率为{:.2f}%,类别{}的概率为{:.2f}%'.format(classes[0], p[0], classes[1], p[1], classes[2], p[2]))

 6. 测试代码使用豹子的图像进行分类,复制自己的绝对路径。

7.预测结果达到了99.95%

如果自己的分类不止三种那么需要修改。我这里训练的是三种图像。根据自己实际情况填写。

还需修改,如果是四分类的话 多加一个 “类别{}的概率为{:.2f}%” 和 classes[3], p[3] ,因为索引是从0开始的 所以四分类的下标就为3。

# 三分类
print('类别{}的概率为{:.2f}%,类别{}的概率为{:.2f}%,类别{}的概率为{:.2f}%'.format(classes[0], p[0], classes[1], p[1], classes[2], p[2]))

制作不易 希望大家多多支持!

有问题可以联系我。添加备注 CSDN图像分类谢谢。QQ

### ResNet18 深度学习模型架构与实现 #### 架构概述 ResNet18 是一种基于残差网络 (Residual Network) 的卷积神经网络,具有18层深度。该模型通过引入跳跃连接解决了深层网络中的梯度消失问题,使得训练更加稳定有效[^2]。 #### 主要组件 - **输入层**: 接收图像数据作为输入。 - **卷积层**: 使用多个3×3的小型滤波器来提取特征图谱。 - **批标准化(Batch Normalization)**: 加速收敛并减少内部协变量偏移。 - **激活函数(ReLU)**: 增加非线性表达能力。 - **池化操作(Max Pooling & Average Pooling)**: 下采样以降低维度。 - **全连接层(Fully Connected Layer)**: 将最后一个卷积层输出映射到分类标签空间。 - **Softmax 层**: 输出概率分布用于多类别分类任务。 #### 特殊设计 - 跳跃连接(Skip Connection) ResNet的核心创新在于其独特的跳过链接机制,允许信息绕过多层传递而不必经过每一步计算。这种结构有助于缓解非常深的网络中存在的退化问题,并促进更深层次的学习效率提升。 #### PyTorch 实现示例 以下是使用PyTorch框架构建ResNet18的一个简单例子: ```python import torch.nn as nn import torchvision.models as models class ResNet18(nn.Module): def __init__(self, num_classes=1000): super().__init__() self.model = models.resnet18(pretrained=True) # 修改最后一层适应新的分类数量 self.model.fc = nn.Linear(self.model.fc.in_features, num_classes) def forward(self, x): return self.model(x) if __name__ == "__main__": net = ResNet18(num_classes=10).cuda() print(net) ``` 此代码片段展示了如何利用预训练权重初始化一个针对特定任务调整过的ResNet18实例。`num_classes` 参数指定了最终分类的数量;对于不同的应用场景可以相应修改这个值。
评论 75
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪里个浪的1024

你的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值