在性能测试中,UV(独立访客数)、PV(页面浏览量)和并发量是重要的指标,用于评估系统的负载能力。它们之间关系紧密,需要通过合理的计算和示例进行说明。
1. 概念解析
-
UV(Unique Visitor)
独立访客数,表示在一天内访问网站的不同用户数。例如,某网站一天有 10,000 人访问,则 UV=10,000。 -
PV(Page View)
页面浏览量,表示用户在网站上访问页面的次数。通常一个用户会浏览多个页面,例如 10,000 个用户共浏览了 50,000 个页面,则 PV=50,000。 -
并发量
指在同一时刻系统同时处理的请求数量,是系统负载能力的核心指标。
2. UV、PV 与并发量的关系公式
并发量是根据 PV 和用户的访问行为计算得出的,可以用以下公式表示:
并发量=总请求数 / 总访问时间(秒)
其中:
- 总请求数 = PV × 每页面的请求数
(每页面的请求数包括页面加载所需的所有资源,如图片、脚本等) - 总访问时间 = UV × 每用户的平均访问时间(秒)
3. 示例说明
假设某网站的性能指标如下:
- UV = 10,000(每日独立访客数)
- PV = 50,000(每日页面浏览量)
- 每用户的平均访问时间 = 5 分钟(300 秒)
- 每个页面加载发起 10 次请求(包括 HTML、CSS、JS 等资源)
3.1 计算总访问时间
总访问时间=UV×每用户的平均访问时间=10,000×300=3,000,000 秒
3.2 计算总请求数
总请求数=PV×每页面的请求数=50,000×10=500,000 次
3.3 计算并发量
并发量的公式为:
并发量=总请求数 / 总访问时间
将值代入:
并发量=500,000 / 3,000,000≈0.17 请求/秒
这是网站在整个访问时间内的平均并发量。
4. 高峰期的并发量计算
实际应用中,访问并非均匀分布,而是集中在高峰时段。例如:
- 假设高峰期集中在 1 小时(3,600 秒)内;
- 80% 的 PV 和请求集中在该时段:
- 高峰期 PV = 50,000 × 80% = 40,000
- 高峰期总请求数 = 40,000 × 10 = 400,000
高峰期的并发量为:
高峰期并发量=高峰期总请求数 / 高峰期持续时间
高峰期并发量=400,000 / 3,600≈111.1 请求/秒
5. 总结 UV、PV 和并发量的关系
-
PV 决定了系统的总请求量
PV 越高,系统需要处理的请求越多,对并发量的要求也越高。 -
UV 和平均访问时间决定了访问的总时长
UV 越高、访问时间越长,总访问时间越大,并发量越小。 -
并发量受访问分布影响显著
高峰期访问量集中时,并发量会显著提升,对系统的承载能力是关键考验。
通过以上示例可以看出,并发量的计算需要结合 PV、UV、平均访问时间和访问分布来综合评估,以帮助合理设计性能测试场景和容量规划。