叶秋萍:DeepSeek+BI,并非你想象中的智能!

大家好,我是《数据运营》作者。

以下是正文,本文较长,可收藏看:

自DeepSeek出来后各大BI厂商都已经陆续完成了集成,从用户应用的角度来说这肯定是件好事,所有的产品都应赶上高科技的列车。

很多读者觉得我的文章分析都很实际,所以我的分析肯定都是客观实在的。所以集成后是不是企业就走入了:智能分析 的阶段,我觉得这个需要做个详细的分析。

当前各大厂商都在讲“AI+BI”的智能化,只要企业用上DeepSeek,数据分析就能自动完成,报告也能一键生成,决策过程从此变得轻松又智能。这个我认为更多是市场对于这段技术的宣讲,并非内行人会得出的结论。

去年chatgpt出来后,BI产品也集成了,当时我还去使用过几家大厂的产品,只能说结果不尽人意,那么春节后DeepSeek横空出世,它是当前最优秀的大模型毋庸置疑,所以我仍然要对DeepSeek的推理原理作一个分析。

DeepSeek的推理能力,听起来很复杂,实际上并不。DeepSeek的强大背后,是基于海量数据的学习和推理。你可以把它理解成一个超级聪明的大脑,经过大量的阅读(其实是“训练”),它学会了如何从大量的信息中提取规律,进而进行推理。它的推理能力其实分两块,一是语言理解,二是信息推理。前者让它能够理解复杂的语言问题,并给出合理的答案;后者则能从结构化和非结构化的数据中抽丝剥茧,提取有价值的分析信息。

DeepSee的强项在于那些已经有清晰规律和模式的任务,比如语言生成、情感分析、推荐系统这些领域,它很优秀。但当它面对复杂的商业数据分析时,就显得力不从心。BI的核心,恰恰是对过去数据的深度分析,需要结合业务知识、经验以及对数据理解的判断。这是DeepSeek做不到的。你让它分析一堆销售数据,给你推算出个趋势,它可以做,但它无法告诉你背后的原因、原因是什么,也无法给你个“接下来怎么做”的答案。

到这里,你要理解DeepSeek的技术原理,以及它的能与不能。

现在多数厂商所讲的自动分析、自动报告,首先未言深浅,简单的分类统计算分析吗,简单的折线图算可视化吗,简单的图表+结论算报告吗?那么企业对于数据分析的需求是否停留在某一个较浅的程度,这个答案是否定的。对于企业商用来说,很多时候,深度分析才是解决问题的关键。尤其是商业决策,往往需要考虑更多的复杂因素、行业背景以及潜在的变化,这些是DeepSeek无法完全涵盖的。这说的也是深度的数据分析与业务分析层面的内容。

所以,自动数据分析、自动生成报告,表述不够严谨容易误导。DeepSeek做得了些基础工作,但要指望它替代人类的经验,给你提供一份真正有价值的报告,那就有点过了。很多时候,它生成的报告只会是一些看起来很专业的数字和图表,表面看很难发现问题(这非常容易误导企业很多不懂数据分析的决策者),实则缺乏深入的洞察,更多是对数据的简单呈现。而且,别忘了,做数据分析可不仅仅是给个数字,数据背后的业务逻辑才是数字结果合理的判断。很多时候,数据告诉你的是“是什么”,却没有给出“为什么是”,甚至连“该怎么办”都没有,就算它告诉你了你能拿来用吗?(目前已经看到有的厂商在这里公开的部分有点不靠谱)

再说到DeepSeek到底能不能“自动化”业务赋能,老实说,这个问题得打个大大的问号。虽然DeepSeek能提高某些任务的效率,但要完全依赖它来做决策支持,那就有点理想化了。

进一步讲,厂商集成的DeepSeek是满血版还是蒸馏版,这个大家在各平台已经完全看到了差距,我相信厂商使用的应该是“蒸馏模型”目的是为了提高速度、降低计算成本。蒸馏模型的好处是可以加快推理速度,但牺牲了准确性和深度。有的厂商会说它作为基础模型,他们做了二次开发或者技术加强,这里有个问题DeepSeek的满血版是不是最强版本。    

目前大模型的集成很多数据分析的结果可能只能在“85%准确率”的水平。听起来挺高。但85%的准确率,意味着你有15%的错误概率。要知道,在很多行业里,15%的数据偏差可能就带来巨大的损失,尤其是金融、医疗这种高风险的领域。数据分析是一件严谨的事,所以偏差容易误导决策者,如果是一个预测模型,那么可以有一些容错空间,但是作为日常分析的工具,每一次的询问都有可能出现问题,这比有误差的预测模型更加有风险。

说白了,DeepSeek和BI的结合,确实为企业带来了新的可能性,但它并非万能的“灵丹妙药”。它更多的还是个辅助工具,可以在一定程度上提高数据处理效率,但要完全依赖它去做决策,显然不现实。所以我们非常赞同各厂商去集成DeepSeek,但是企业并未就此进入智能化的数据分析,这一个事实作为甲方企业需要清楚认识,因为甲方才是为业务买单的经营者。

如果真的要说它具有智能化,它的智能化是表现在哪里呢?

如果企业有一个很完备的数据指标库,那么DeepSeek作为询问一个入口去获取数据指标结果,那么这个是可以实现的,可以说加速了用户获取数据的速度,实现了即时看数的能力,这对业务人员非常友好,但是希望DeepSeek可以基于你的需求来帮你计算,这个能力目前是不成熟的。

我也和专门开发大模型的朋友探讨了,当前从技术上本身是不具备复杂多维数据分析的,当然有的简单的也不能实现,比如我测评中让它实现简单的分类统计,我朋友让它实现计算分位数,这些都失败了,所以更加复杂的分析结果的效果非常不可控。

DeepSeek无疑是优秀的,与BI的结合也是大势所趋,但是整个它在数据分析的商业化应用真的还不成熟,特别是甲方企业,更应理智看待它的“智能化”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值