数学基础
一、集合
1、集合(set):通常用大A表示
2、元素(element):通常用小a表示
2.1 表示某元素是否属于某集合时,可用 a ∈ A / a ∉ A
3、集合的描述方式:
3.1 列举 A={1,2,3}
3.2 描述 B = {x : x是有理数} -> 打冒号以示描述,表名【:】前是变量,【:】后是描述
4、子集
4.1 A的每一个元素都在B中,则A ⊆ B
4.2 如果集合A是B的子集,且A≠B,即B中至少有一个元素不属于A,那么A就是B的真子集,可记作:A⊊B
4.3 空集 ∅
根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集。对于空集∅,我们规定∅⊆A,即空集是任何集合的子集。
说明:若A=∅,则∅⊆A仍成立。
5、集合运算
5.1 交:A∩B = {x : x∈ A 且 x ∈ B} -> 两个集合交集部分
5.2 并:A∪B = {x : x∈ A 或 x ∈ B} -> 两个集合
5.3 差:A\B = {x : x∈ A 且 x ∉ B} -> 集合A除掉2个交集部分剩余的地方
6、其他符号
6.1 任意 ∀
6.2 存在 ∃
6.3 基数/势 |A|:集合中元素的个数,A ={1,2,3},则|A|=3;
6.4 常见集合:自然数N、整数Z、有理数Q、实数R、复数C
7、实数集
7.1 区间 -> 开区间不包含于,闭区间包含于
(a,b) (1,2) = {x:1<x<2}
[a,b][1,2] = {x: 1≤ x ≤ 2}
(a,b](1,2] = {x: 1<x ≤2}
[a,b)[1,2) = {x: 1≤ x <2}
7.2 邻域 -> 对应区间上是开区间
U(a,ε) ={x: a-ε <x < a-ε}
空心/去心邻域
Uο(a,ε)={x: a-ε <x < a-ε且 a≠x}
7.3 数轴
7.3.1 实数集上的数和数轴上的点一一对应,但有理数并没有布满数轴,实数集中还存在着无理数
7.3.2 有理数在数轴上以稠密状态存在,∀(a,b)∩Q≠∅;任意区间与有理数的交集不等于空集,反之,无理数亦是
7.4 确界存在定理
7.4.1 非空有上界的实数集必然有上确界,非空有下界的实数集必然有下确界
7.4.2 上界:集合E⊆R,并且E≠∅,如果存在M∈R,使得对于∀x∈E,则x≤M,则称E有上界,并且说M是E的一个上界
7.4.3 下界:存在一个实数a和一个实数集合B,使得对∀x∈B,都有x≥a,则称a为B的下界
(1,2] ={x:1<x≤2} 集合的上界可以是2,3,4…… 集合的下界可以是1,0,-1……
7.4.4 上确界:上界中最小的,记为 M = supE
7.4.5 下确界:下界中最大的,记为M = infE
7.5 实数集的基数
7.5.1 等势:集合A到集合B存在双射,称A与B等势,记为A≈B。特点地,称与自然数集N等势的集合为可列集
二、常用不等式
1、三角不等式:|x+y| ≤ |x| +|y| 两边之和大于等于第三边
2、伯努利不等式:对于任意的x≥-1 和任意的正整数n,有(1+x)n次方≥1+nx
3、算数-几何平均值不等式:算数均值≥几何均值
三、映射
揭示两个集合之间的关系
1、映射:设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记为:f: A→B;其中,b成为元素a在映射f次数的象,记为:b=f(a);a称为b关于映射f的原象。也称A为原象集,B为象集
2、单射(嵌入映射):指集合A中的元素不相等,f(a)≠f(b),在集合B中有唯一确定的元素,则f(a)=b(1)且f(b)≠b(1),f(a)有指定元素c,则f(b)只能在有除c以外的对应元素
3、满射(到上映射):象集中每个元素都有原象的映射称为满射 :即B中的任意一元素y都是A中的像,则称f为A到B上的满射,强调f(A)=B(B的原象可以多个)。
4、双射(一一映射):即单又满
参考图片(来源百度):
四、函数
1、函数是数集到数集的映射
1.1 函数:对于给定的集合X⊆R,如果存在一个对应法则f,使得对于X中的每一个数x,在R中存在唯一的数y与之对应,则称对应法则f为从X到R的一个函数,记为:f : X→ R,x (短竖) y = f(x);其中y称为f在x的值,X称为函数f的定义域,数集{f(x):x ∈ X},称为函数f的值域,记为f(X);x称为自变量,y称为因变量。
2、六类基本初等函数
参考:https://jingyan.baidu.com/article/3052f5a12f8cae97f31f86bd.html
2.1 第一种.常值函数: y=c
2.2 第二种:幂函数:
2.3 第三种:指数函数:
2.4 第四种:对数函数:
2.5 第五种:三角函数:
2.6 反三角函数:
3、函数的运算
3.1 四则运算
3.2 复合运算
3.3 反函数
基本初等函数经过有限次四则运算和复合所得到的的函数称为初等函数
4、特殊函数
4.1 符号函数
4.2 高斯取整函数
y =[x] n≤x<n+1,则x=n
4.3 狄利克雷函数
4.4 黎曼函数
5、函数的性质
5.1 有界性
存在常数M,使得对任意x∈X,都有f(x)≤M,称f(x)在X有上界;
存在常数M,使得对任意x∈X,都有f(x)≥M,称f(x)在X有下界;
e.g. sinx,有界性;1/x,有下界
5.2 单调性
5.3 周期性
存在T>0,使得对于任意x∈X,有f(X+T)=F(X),称T是周期
e.g. tanx
5.4 奇偶性
X关于原点对称
奇函数f(x) = -f(-x) e.g. sinx
偶函数 f(x) = f(-x) e.g. cosx
五、课余内容
1、辅助参考内容
1.1 三角函数 参考链接:https://baike.baidu.com/item/%E4%B8%89%E8%A7%92%E5%87%BD%E6%95%B0/1652457
2、难点
2.1 时隔十年再次捡起数学,除了痛苦还是痛苦,所有东西一头雾水,需要反复看个2,3遍再自己推导才感觉有些明白,还是要尽快适应
2.2 主要问题是记忆力不好,在跟着推导的过程中需要重复去对照符号和公式,确保没有理解错含义
2.3 其次是要修改观看和做笔记的方式,每讲完一个点就记下非常拖沓,可以考虑以理解为主,实战时再具体使用帮助理解
2.4 最后需要合理使用时间,花费太长时间在拓展记忆,导致前后边内容理解上衔接不上
2.5 今天只来得及看数学,没有花费在Python基础上,还得在接下来的实践中调整