pandas金融数据处理

本文介绍了如何使用pandas处理金融数据,包括读取Excel数据、检查缺失值、绘图、数据过滤、滑动窗口统计和计算布林指标等。涉及到的操作有删除缺失值、绘制价格曲线、计算变化率、设置日期为索引、重采样和移动数据等,展示了pandas在金融数据分析的强大功能。
摘要由CSDN通过智能技术生成

51.使用绝对路径读取本地Excel数据

import numpy as np
import pandas as pd

data = pd.read_excel('/Users/baji/Desktop/600000.SH.xls')

在这里插入图片描述

52.查看数据前三行

data.head(3)

在这里插入图片描述

53.查看每列数据缺失值情况

data.isnull().sum()

在这里插入图片描述

54.提取日期列含有空值的行

data[data['日期'].isnull()]

在这里插入图片描述

55.输出每列缺失值具体行数

for columname in data.columns:
    if data[columname].count() != len(data):
        loc = data[columname][data[columname].isnull().values==True].index.tolist()
        print('列名:"{}",第{}行位置有缺失值'.format(columname,loc))

在这里插入图片描述

56.删除所有存在缺失值的行

data.dropna(axis=0,how='any',inplace=True)

how:any-有空值就删除,all-全部为空值才删除
inplace:false-返回新数据集,True-源数据集操作
在这里插入图片描述

57.绘制收盘价的折线图

import matplotlib.pyplot as plt
#plt.plot(data['收盘价(元)'])

plt.style.use('seaborn-darkgrid') #设置画图风格
plt.rc('font',size=6)	#设置图中字体和大小
plt.rc('figure',figsize=(4,3),dpi=150)	#设置图像大小
data['收盘价(元)'].plot()

plt.style.use()
参数可以是一个URL或路径,指向自己定义的mplstyle文件,找到使用样式可用plt.style.available
共26种风格:['bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seabo

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值