《程序员面试金典(第6版)》 面试题 08.06. 汉诺塔问题

题目描述

  • 在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
    • (1) 每次只能移动一个盘子;
    • (2) 盘子只能从柱子顶端滑出移到下一根柱子;
    • (3) 盘子只能叠在比它大的盘子上。

请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。

你需要原地修改栈。

示例1:

  • 输入:A = [2, 1, 0], B = [], C = []
    输出:C = [2, 1, 0]

示例2:

  • 输入:A = [1, 0], B = [], C = []
    输出:C = [1, 0]

提示:

  • A中盘子的数目不大于14个。
    在这里插入图片描述

解题思路与代码

  • 由于我是第一次了解到汉诺塔问题与分治思想,所以,这到题对于我来说可不算是一道简单的题。
  • 再这里,我先聊一下什么叫做分治。分治是一种算法的设计策略,它将一个较大的问题,分解成多个相对较小的子问题,这些子问题通常与原始问题具有相同的结构。然后,将子问题的解合并起来,形成对原始问题的解。
  • 分治算法通常使用递归来进行实现,但并非所有的递归算法都是分治算法。

好的,现在让我们结合题意,来看看这道题是怎么利用分治思想的吧。

分治法

  • 首先我们先了解一下汉诺塔这个问题的规则,我们有三根柱子A,B,C,其中A柱子上有n个大小不同的盘子,我们需要把所有的盘子从A柱子移动到C柱子上,移动过程中,每次只能移动一个盘子,且大盘子不能放在小盘子上。我们在一定的过程中,可以使用符合任何一个符合规则的柱子去做过度。

  • 我们先去了解一下当n = 1的时候的情况。当n=1时,我们直接将盘子从A移动到C就好了。只需要一步。

  • 再当n = 2时,我们需要先将第 1 个 盘子移动到 B上,再将第2个盘子移动到C上,最后将B上的盘子移动到C上。只需要3步。

  • 那当n > 2时,又是一个什么样的情况呢?我们可不可以去这样想象一下,将A上面前n-1个盘子看做一个整体,记作一个盘子,第n个盘子记作一个盘子。那是不是又回到n = 2 的情况上了呢?

  • 在这里,就符合了分治的思想,将一个较大的问题,分解成多个相对较小的子问题,子问题与原始问题都拥有者相同的结构,然后这个问题我们可以用递归去实现。

接下来,让我们看看如何去用递归实现这个分治思想。

  • 首先,当n = 1的时候,直接将A上的盘子移动到C上。
  • 其次,当n>= 2时,先将前n-1个盘子从A移动到B上(子问题,递归)
  • 之后再将第n个盘子从A移动到C上
  • 最后将B上的n-1个盘子移动到C上(子问题,递归)

具体的代码,我们来看看是如何实现的:

class Solution {
public:
    void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {
        int n = A.size();
        if(n == 0) return ;
        move(A,B,C,n);
        return;
    }
    void move(vector<int>& A, vector<int>& B, vector<int>& C, int n){
        if(n == 1) { //当n = 1 时,我们直接将A柱子上的盘子放在C上即可
            C.push_back(A.back());
            A.pop_back();
            return;
        }
        //当n>1的时候,我们需要借助C,将n-1数量的盘子从A移动到B上。所以这里B与C交换了一下位置。
        move(A,C,B,n-1);
        //将第n个盘子从A移动到C上。
        C.push_back(A.back());
        A.pop_back();
        //当n>1的时候,我们需要借助A,将n-1数量的盘子,从B移动到C上。所以这里A与B交换了一下位置。
        move(B,A,C,n-1);
        return;
    }
};
  • 我相信很多朋友和我一样,在看到move(A,C,B,n-1);move(B,A,C,n-1);这两行代码的时候有点犯迷糊,咦,这里的代码为什么这样写?

我们需要观察这个返回条件:

if(n == 1) { //当n = 1 时,我们直接将A柱子上的盘子放在C上即可
            C.push_back(A.back());
            A.pop_back();
            return;
        }
  • 当n = 1时,我们直接将盘子从A柱子移到C柱子上。

  • 当n = 2时,我们需要进行递归操作。首先,我们需要将A柱子上的较小盘子放到B柱子上。如果我们写成move(A, B, C, n-1);,那么这个盘子会被放到C柱子上,这是不符合我们的目标的。因此,我们应该写成move(A, C, B, n-1);,这样盘子就会被放到B柱子上。

  • 然后,我们将A柱子上最大的盘子放到C柱子上,代码如下:C.push_back(A.back()); A.pop_back();

  • 最后,我们需要将B柱子上的盘子放到C柱子上。为了实现这个操作,我们需要调用递归函数move(B, A, C, n-1);

  • 对于n>2的情况,我们可以沿用n=2时的分析方法,因为子问题与原始问题具有相同的结构。这充分体现了分治算法的思想。

至此,关于这道题的代码的一些困难点也就是完全解释完毕了。

在这里插入图片描述

复杂度分析

时间复杂度:

  • 在汉诺塔问题中,每次递归调用都会将问题规模减小一倍。当n个盘子需要移动时,我们需要将前n-1个盘子移动两次(分别从A柱子移动到B柱子,再从B柱子移动到C柱子),并且还需要将第n个盘子从A柱子移动到C柱子。因此,我们可以用递归公式来表示时间复杂度:T(n) = 2 * T(n-1) + 1。

根据上述递归公式,我们可以得出时间复杂度为O(2^n - 1)。这是因为在解决汉诺塔问题时,每次递归都会使问题规模减小一半,而总共有n层递归。因此,时间复杂度是O(2^n)的数量级。

空间复杂度:

  • 空间复杂度主要受递归深度的影响。在汉诺塔问题中,递归深度为n。对于每一层递归,我们需要额外的栈空间来保存函数调用的信息。因此,空间复杂度为O(n)。

总结:

  • 时间复杂度:O(2^n - 1)(近似为O(2^n))
    空间复杂度:O(n)

总结

这道题是一道学习分治算法的好题。做完了以后感觉收获满满。又学会了一种新的算法思想,hh。

突然想到二分法也是属于分治算法思想,因为二分法的基本思想是将一个有序数组分成两半,确定目标元素可能存在的那一半,继续对该半部分进行二分查找,直到找到目标元素或者确定目标元素不存在。

它同样也是将一个大问题分成两个相似结构的子问题。再去将这两个子问题去分别求解。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿宋同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值