码龄0.3年的python成长之路(二):骰子谜题

本文介绍了作者使用Python解决骰子谜题的过程,目标是找到使小明在与两个机器人掷骰子游戏中获胜概率最大的数字组合。通过生成所有可能的组合,进行多次模拟试验,最终确定最高胜率为50%的组合:[0, 0, 0, 8, 8, 8]。此外,作者还讨论了数据去重的重要性以及如何减少计算资源的浪费。" 111923958,10544352,Ubuntu Server 16.04 安装与RAID1配置指南,"['Ubuntu', 'RAID', '服务器配置', '磁盘管理', '系统安装']
摘要由CSDN通过智能技术生成

骰子原题:

小明参加了少年宫的一项趣味活动:每个小朋友发给一个空白的骰子(它的6个面是空白的,没有数字),要小朋友自己设计每个面写哪个数字。但有如下要求:
1. 每个面只能填写 0 至 8 中的某一个数字。
2. 不同面可以填写同样的数字,但6个面总和必须等于24。
填好后,小朋友可以用自己填写好数字的骰子向少年宫的两个机器人挑战----玩掷骰子游戏。规则如下:
三方同时掷出自己的骰子,如果出现任何相同的数字,则三方都不计分。
如果三方数字都不同,则最小数字一方扣 1 分,最大数字一方加 1 分。
小明看到了两个机器人手中的骰子分别是:
0 0 0 8 8 8
1 1 4 5 6 7
请你替小明算一下,他如何填写,才能使自己得分的概率最大。
请提交小明应该填写的6个数字,按升序排列,数字间用一个空格分开。
如果认为有多个答案,提交字母序最小的那个方案。
请严格按照格式,通过浏览器提交答案。
注意:只提交一行内容,含有6个被空格分开的数字。不要写其它附加内容,比如:说明性的文字。

思路逻辑:

  • 生成器:骰子6面数字和 == 24,排列组合来说,这个规则限定了排列的可能性总量

  • 随机生成小明骰子搭配所有的可能存为npz文档,读为ming_list_All

  • 模拟投骰子一次的状况,判断win条件,True时win_count + 1

  • 每一组ming_list,模拟10000次投骰子实验,
    计算对应此组ming_list的win_count值,
    并记录在列表win_count_list中(100个数字)

  • 用max[win_count_list],并index此数定位,找到对应该组的ming_list数字搭配

完成

代码部分

先做一个生成器

将生成的小明可写的数组组合存在ming_list.npy当中,等待调用

xlist = []
ming_list = []
def dice_generate():
    for x1 in range(0, 9):
        for x2 in range(0, 9):
            for x3 in range(0, 9):
                for x4 in range(0, 9):
                    for x5 in range(0, 9):
                        for x6 in range(0, 9):
                            xlist = [x1, x2, x3, x4, x5, x6]
                            if sum(xlist) == 24:
                                ming_list.append(xlist)
                            else:
                                continue
dice_generate()
np.save('ming_list.npy', ming_list)

生成的ming_list列表元素个数有32661个(满足和为24),这里明显32661个数据如果做迭代、并且打印(print)的话,会让机器运行时间过长。后期注意要用 if - else 条件语句缩短运行时间。

print(len(ming_list)) # 32661

这段代码写完后,开启另一个py文件,调用刚生成的ming_list.npy即可,否则后面的命名会复杂。

选择ming_list当中一个组来进行骰子投掷试验

另开新的py文档后,import numpy as np的部分我省略了,如需要复刻请加上。
以第234组数据作为小明的骰子,与两个机器人同时投掷一次的代码如下:

ming_list_All = np.load('ming_list.npy') 
ming_list_234 = ming_list_All[234]  # [0 1 5 6 8 4]
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]    
def dice_once():
    r1 = robot1_list[np.random.randint(0, 6)]
    r2 = robot2_list[np.random.randint(0, 6)]
    ming = ming_list_234[np.random.randint(0, 6)]
    return r1, r2, ming

定义判断小明胜利的函数,计算10000次试验能有多少次胜利:

def Win():
    for i in range(10000):  # 执行10000次投骰子试验
        global win_count
        list = dice_once()
        r1 = list[0]
        r2 = list[1]
        ming = list[2]
        if (ming < r1) or (ming < r2):
            continue
        else:
            win_count += 1
Win()
print(win_count)

以第234组数据为例,计算出10000次同时投掷模拟,小明能胜出3549次。
以上完成,开始组装各个模块,判断3万多组数据中,win_count最大的那个,找到其编号,回溯ming_list_All便可找到胜率最大的组合。

建议另外开新的py文档来做组装

这应该是好的习惯,不然很多注释文档,前后查要晕,头秃了别怪代码,更不要怪我。

import numpy as np 
import time

start = time.time()

ming_list_All = np.load('ming_list.npy')  
# 重新定义ming_list列表为ming_list_All,稍后要对当中的每一行进行遍历
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]

def dice_once():
    r1 = robot1_list[np.random.randint(0, 6)]
    r2 = robot2_list[np.random.randint(0, 6)]
    ming = ming_list_[np.random.randint(0, 6)]
    return r1, r2, ming

  # 遍历ming_list里所有的组合

for i in range(32661):
    ming_list_ = ming_list_All[i]
    win_count = 0    # 设置win_count初始值为0
    for j in range(10000):
        list = dice_once()
        r1 = list[0]
        r2 = list[1]
        ming = list[2]
        if (ming < r1) or (ming < r2):
            continue
        else:
            win_count += 1
    if win_count < 5000:
        continue
    else:
        print(i, win_count)
    # wincount_list.append(win_count)  # 这行代码运行时太长,时间无法计算
    continue

这里用“if win_count < 5000”来约束,减少计算机的计算时间。
同时,也是对小明的期许,如果写的骰子组合胜率还不能超过五成,那咱们就劝退小明吧!
最后打印出“(i , win_count)”代表(第几个循环,得胜次数)

我用了import time,来计算电脑运算这段代码所花费的时间,这里忽略。时间长到我写道这里,刚好运行完毕,约35分钟。

运行后结果:

120 5086
156 5029
2706 5037
2742 5033
3158 5004
29466 5035
29502 5063
32504 5006
32660 5045
计算用时:2131.7851

用人脑来看,最高得胜次数的组,编码是120,得胜次数是5086,组合是 [ 0, 0, 0, 8, 8, 8 ],竟然和机器人1一样的组合,才得到五成胜率吗?

回去找ming_list_All编码是120的组合

这个时候疯了,回溯验证(将组合带入投掷模拟)的时候竟然胜率低于五成,说明模拟10000次的投掷,差别再上下100的胜率可能都没有意义。
试着改!x<5050的,直接pass掉。
然后,将上述代码 print(i, win_count) 改为
print ( i, win_count, ming_list_All [ i ] )

耐着性子再跑一次,谁叫自己码龄很低。
这样就不用回溯,直接得到胜率最高的一组。

结果:

2750 5093 [0 8 0 8 8 0]
29466 5094 [8 0 0 0 8 8]
29910 5055 [8 0 8 0 0 8]
计算用时:2292.9524

好嘛,小明好像没救了?结果一样。
不过,这结果也说明原始数据32661的量,有点虚大了,浪费计算资源。
脑子嗡得一下,好像得到啥启示,为什么不给32661个数据排序后做去重??

ming_list_All的二维数据去重

由于原始数据是类似这样的结构:
[ 0, 0, 0, 8, 8, 8 ], [ ] ……[ 0, 1, 5, 6, 8, 4 ]
我们要将每一个组合进行升序排列,这样就会产生很多重复的数据。
然后用转元组tuple(特性是不允许重复数据的存在,会自动过滤重复数据)、再转回新列表的方法清洗数据。

这一步应该早点做,经验教训。

# 清洗:处理重复数据

import numpy as np

l1 = np.load('ming_list.npy')
l2 = []
for i in l1:
    new_i = sorted(i, reverse=False)
    l2.append(new_i)

dic = list(set([tuple(t) for t in l2]))
dic = [list(v) for v in dic]
print(len(dic))
print(dic)
np.save('dic.npy', dic)

好嘛,清洗后得到清爽的不重复的151个组合。真是清爽啊!
把 dic.npy 替换掉主程序的ming_list.npy。
增大模拟投掷次数到1000000次,还是一样,如果小过五成胜率,劝退小明。
由于模拟投掷次数增大100倍,结果会越接近真实得胜概率。

原汁原味代码如下:

import numpy as np 
import time

start = time.time()

ming_list_All = np.load('dic.npy')  
# 重新定义ming_list列表为ming_list_All,稍后要对当中的每一行进行遍历
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]

def dice_once():
    r1 = robot1_list[np.random.randint(0, 6)]
    r2 = robot2_list[np.random.randint(0, 6)]
    ming = ming_list_[np.random.randint(0, 6)]
    return r1, r2, ming
  
# 遍历ming_list里所有的组合
for i in range(151):
    ming_list_ = ming_list_All[i]
    win_count = 0    # 设置win_count初始值为0
    for j in range(1000000):
        list = dice_once()
        r1 = list[0]
        r2 = list[1]
        ming = list[2]
        if (ming < r1) or (ming < r2):
            continue
        else:
            win_count += 1
    if win_count < 500000:
        continue
    else:
        print(i, win_count, ming_list_All[i])
    # wincount_list.append(win_count)  # 这行代码运行时太长,时间无法计算
    continue

end = time.time()
print("计算用时:%0.4f秒" % (end - start))

运算结论

模拟投掷次数一百万时,结果如下,也将近花了20多分钟:

4 500054 [0 0 0 8 8 8]

如果调整模拟投掷次数降到十万,结果出来的快很多:

4 50093 [0 0 0 8 8 8]
计算用时:111.9557

结论:够了,小明洗洗睡吧。

最后,小明最高胜率五成,骰子字儿为:[ 0, 0, 0, 8, 8, 8 ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小熊@RoyalzoneTCM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值