骰子原题:
小明参加了少年宫的一项趣味活动:每个小朋友发给一个空白的骰子(它的6个面是空白的,没有数字),要小朋友自己设计每个面写哪个数字。但有如下要求:
1. 每个面只能填写 0 至 8 中的某一个数字。
2. 不同面可以填写同样的数字,但6个面总和必须等于24。
填好后,小朋友可以用自己填写好数字的骰子向少年宫的两个机器人挑战----玩掷骰子游戏。规则如下:
三方同时掷出自己的骰子,如果出现任何相同的数字,则三方都不计分。
如果三方数字都不同,则最小数字一方扣 1 分,最大数字一方加 1 分。
小明看到了两个机器人手中的骰子分别是:
0 0 0 8 8 8
1 1 4 5 6 7
请你替小明算一下,他如何填写,才能使自己得分的概率最大。
请提交小明应该填写的6个数字,按升序排列,数字间用一个空格分开。
如果认为有多个答案,提交字母序最小的那个方案。
请严格按照格式,通过浏览器提交答案。
注意:只提交一行内容,含有6个被空格分开的数字。不要写其它附加内容,比如:说明性的文字。
思路逻辑:
-
生成器:骰子6面数字和 == 24,排列组合来说,这个规则限定了排列的可能性总量
-
随机生成小明骰子搭配所有的可能存为npz文档,读为ming_list_All
-
模拟投骰子一次的状况,判断win条件,True时win_count + 1
-
每一组ming_list,模拟10000次投骰子实验,
计算对应此组ming_list的win_count值,
并记录在列表win_count_list中(100个数字) -
用max[win_count_list],并index此数定位,找到对应该组的ming_list数字搭配
完成
代码部分
先做一个生成器
将生成的小明可写的数组组合存在ming_list.npy当中,等待调用
xlist = []
ming_list = []
def dice_generate():
for x1 in range(0, 9):
for x2 in range(0, 9):
for x3 in range(0, 9):
for x4 in range(0, 9):
for x5 in range(0, 9):
for x6 in range(0, 9):
xlist = [x1, x2, x3, x4, x5, x6]
if sum(xlist) == 24:
ming_list.append(xlist)
else:
continue
dice_generate()
np.save('ming_list.npy', ming_list)
生成的ming_list列表元素个数有32661个(满足和为24),这里明显32661个数据如果做迭代、并且打印(print)的话,会让机器运行时间过长。后期注意要用 if - else 条件语句缩短运行时间。
print(len(ming_list)) # 32661
这段代码写完后,开启另一个py文件,调用刚生成的ming_list.npy即可,否则后面的命名会复杂。
选择ming_list当中一个组来进行骰子投掷试验
另开新的py文档后,import numpy as np的部分我省略了,如需要复刻请加上。
以第234组数据作为小明的骰子,与两个机器人同时投掷一次的代码如下:
ming_list_All = np.load('ming_list.npy')
ming_list_234 = ming_list_All[234] # [0 1 5 6 8 4]
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]
def dice_once():
r1 = robot1_list[np.random.randint(0, 6)]
r2 = robot2_list[np.random.randint(0, 6)]
ming = ming_list_234[np.random.randint(0, 6)]
return r1, r2, ming
定义判断小明胜利的函数,计算10000次试验能有多少次胜利:
def Win():
for i in range(10000): # 执行10000次投骰子试验
global win_count
list = dice_once()
r1 = list[0]
r2 = list[1]
ming = list[2]
if (ming < r1) or (ming < r2):
continue
else:
win_count += 1
Win()
print(win_count)
以第234组数据为例,计算出10000次同时投掷模拟,小明能胜出3549次。
以上完成,开始组装各个模块,判断3万多组数据中,win_count最大的那个,找到其编号,回溯ming_list_All便可找到胜率最大的组合。
建议另外开新的py文档来做组装
这应该是好的习惯,不然很多注释文档,前后查要晕,头秃了别怪代码,更不要怪我。
import numpy as np
import time
start = time.time()
ming_list_All = np.load('ming_list.npy')
# 重新定义ming_list列表为ming_list_All,稍后要对当中的每一行进行遍历
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]
def dice_once():
r1 = robot1_list[np.random.randint(0, 6)]
r2 = robot2_list[np.random.randint(0, 6)]
ming = ming_list_[np.random.randint(0, 6)]
return r1, r2, ming
# 遍历ming_list里所有的组合
for i in range(32661):
ming_list_ = ming_list_All[i]
win_count = 0 # 设置win_count初始值为0
for j in range(10000):
list = dice_once()
r1 = list[0]
r2 = list[1]
ming = list[2]
if (ming < r1) or (ming < r2):
continue
else:
win_count += 1
if win_count < 5000:
continue
else:
print(i, win_count)
# wincount_list.append(win_count) # 这行代码运行时太长,时间无法计算
continue
这里用“if win_count < 5000”来约束,减少计算机的计算时间。
同时,也是对小明的期许,如果写的骰子组合胜率还不能超过五成,那咱们就劝退小明吧!
最后打印出“(i , win_count)”代表(第几个循环,得胜次数)
我用了import time,来计算电脑运算这段代码所花费的时间,这里忽略。时间长到我写道这里,刚好运行完毕,约35分钟。
运行后结果:
120 5086
156 5029
2706 5037
2742 5033
3158 5004
29466 5035
29502 5063
32504 5006
32660 5045
计算用时:2131.7851秒
用人脑来看,最高得胜次数的组,编码是120,得胜次数是5086,组合是 [ 0, 0, 0, 8, 8, 8 ],竟然和机器人1一样的组合,才得到五成胜率吗?
回去找ming_list_All编码是120的组合
这个时候疯了,回溯验证(将组合带入投掷模拟)的时候竟然胜率低于五成,说明模拟10000次的投掷,差别再上下100的胜率可能都没有意义。
试着改!x<5050的,直接pass掉。
然后,将上述代码 print(i, win_count) 改为
print ( i, win_count, ming_list_All [ i ] )
耐着性子再跑一次,谁叫自己码龄很低。
这样就不用回溯,直接得到胜率最高的一组。
结果:
2750 5093 [0 8 0 8 8 0]
29466 5094 [8 0 0 0 8 8]
29910 5055 [8 0 8 0 0 8]
计算用时:2292.9524秒
好嘛,小明好像没救了?结果一样。
不过,这结果也说明原始数据32661的量,有点虚大了,浪费计算资源。
脑子嗡得一下,好像得到啥启示,为什么不给32661个数据排序后做去重??
ming_list_All的二维数据去重
由于原始数据是类似这样的结构:
[ 0, 0, 0, 8, 8, 8 ], [ ] ……[ 0, 1, 5, 6, 8, 4 ]
我们要将每一个组合进行升序排列,这样就会产生很多重复的数据。
然后用转元组tuple(特性是不允许重复数据的存在,会自动过滤重复数据)、再转回新列表的方法清洗数据。
这一步应该早点做,经验教训。
# 清洗:处理重复数据
import numpy as np
l1 = np.load('ming_list.npy')
l2 = []
for i in l1:
new_i = sorted(i, reverse=False)
l2.append(new_i)
dic = list(set([tuple(t) for t in l2]))
dic = [list(v) for v in dic]
print(len(dic))
print(dic)
np.save('dic.npy', dic)
好嘛,清洗后得到清爽的不重复的151个组合。真是清爽啊!
把 dic.npy 替换掉主程序的ming_list.npy。
增大模拟投掷次数到1000000次,还是一样,如果小过五成胜率,劝退小明。
由于模拟投掷次数增大100倍,结果会越接近真实得胜概率。
原汁原味代码如下:
import numpy as np
import time
start = time.time()
ming_list_All = np.load('dic.npy')
# 重新定义ming_list列表为ming_list_All,稍后要对当中的每一行进行遍历
robot1_list = [0, 0, 0, 8, 8, 8]
robot2_list = [1, 1, 4, 5, 6, 7]
def dice_once():
r1 = robot1_list[np.random.randint(0, 6)]
r2 = robot2_list[np.random.randint(0, 6)]
ming = ming_list_[np.random.randint(0, 6)]
return r1, r2, ming
# 遍历ming_list里所有的组合
for i in range(151):
ming_list_ = ming_list_All[i]
win_count = 0 # 设置win_count初始值为0
for j in range(1000000):
list = dice_once()
r1 = list[0]
r2 = list[1]
ming = list[2]
if (ming < r1) or (ming < r2):
continue
else:
win_count += 1
if win_count < 500000:
continue
else:
print(i, win_count, ming_list_All[i])
# wincount_list.append(win_count) # 这行代码运行时太长,时间无法计算
continue
end = time.time()
print("计算用时:%0.4f秒" % (end - start))
运算结论
模拟投掷次数一百万时,结果如下,也将近花了20多分钟:
4 500054 [0 0 0 8 8 8]
如果调整模拟投掷次数降到十万,结果出来的快很多:
4 50093 [0 0 0 8 8 8]
计算用时:111.9557秒
结论:够了,小明洗洗睡吧。
最后,小明最高胜率五成,骰子字儿为:[ 0, 0, 0, 8, 8, 8 ]