那些细碎的所得(1):有关音频特征处理

这篇博客记录了作者在学习AI过程中处理音频特征的心得,主要介绍了使用wave、numpy、scipy.signal和matplotlib等库进行音频读取、数据处理和特征可视化,特别是scipy.signal.stft函数的应用,并提供了相关参数解释。文章还提到了thinkdsp库的获取方式以及如何使用pcolormesh函数绘制时频特征图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缘起

在学AI,当做各种特征工程的过程中,需要一个笔记来记录所得,不然以后遇到相同情况的时候,要参考各种文档还需要左查右查太繁琐了,不如记录下来,分享在博客,大家也能一起受益。

故,这个系列产生了。对于没有需要的人来说可能碎碎念,自用为主,各取所需啦。

处理音频特征需要库

import wave 
import numpy as np 
import scipy.signal as signal
import matplotlib.pyplot as plt  
  • 这里wave库是python自带,不用另外pip安装
  • numpy处理数组
  • signal是scipy库里面专门用于信号处理的
  • matplotlib用于特征可视化
  • 还有一个库叫做thinkdsp,是做数字信号处理的库,去github可以下载:GIThub里面的thinkdsp链接,还有电子书
  • 也可以通过下面的方法安装在自己库中,pip或者conda请随意
pip install thinkx
conda install thinkx
- 里面有thinkdsp处理音频信号的,也有thinkbayes贝叶斯相关的模块;
- 调用thinkdsp的方法: import thinkdsp
- 使用这个库处理音频也非常简便,具体参考Allen B. Downey的书;
- pypi有具体介绍:https://pypi.org/project/thinkx/

音频读取及查看参数

wavfile = wave.open("./data.wav", "rb")
# 后面记得 wavfile.close() 完成打开和关闭的过程

params = wavfile.getparams()
nchannels, sampwidth, framerate, nframes = params[:4
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小熊@RoyalzoneTCM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值