缘起
在学AI,当做各种特征工程的过程中,需要一个笔记来记录所得,不然以后遇到相同情况的时候,要参考各种文档还需要左查右查太繁琐了,不如记录下来,分享在博客,大家也能一起受益。
故,这个系列产生了。对于没有需要的人来说可能碎碎念,自用为主,各取所需啦。
处理音频特征需要库
import wave
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
- 这里wave库是python自带,不用另外pip安装
- numpy处理数组
- signal是scipy库里面专门用于信号处理的
- matplotlib用于特征可视化
- 还有一个库叫做thinkdsp,是做数字信号处理的库,去github可以下载:GIThub里面的thinkdsp链接,还有电子书
- 也可以通过下面的方法安装在自己库中,pip或者conda请随意
pip install thinkx
conda install thinkx
- 里面有thinkdsp处理音频信号的,也有thinkbayes贝叶斯相关的模块;
- 调用thinkdsp的方法: import thinkdsp
- 使用这个库处理音频也非常简便,具体参考Allen B. Downey的书;
- pypi有具体介绍:https://pypi.org/project/thinkx/
音频读取及查看参数
wavfile = wave.open("./data.wav", "rb")
# 后面记得 wavfile.close() 完成打开和关闭的过程
params = wavfile.getparams()
nchannels, sampwidth, framerate, nframes = params[:4