第1节 欧式期权价格

本文介绍了欧式期权价格的计算,包括Black-Scholes-Merton定价公式,详细讲解了看涨和看跌期权的定价表达式,并提供了Python代码实现。同时,文章探讨了正态分布累计概率函数、看跌-看涨平价关系以及为何在计算中使用无风险利率r而非资产预期收益率μ。
摘要由CSDN通过智能技术生成

第1节 欧式期权价格



1.1 简介




       
考虑期权对应的资产价格为 S ( t ) S(t) S(t), 记为 S S S,它的变化过程为几何布朗运动,
d S S = μ d t + σ d z      . \frac{dS}{S} = \mu dt + \sigma dz \;\;. SdS=μdt+σdz.
这里假设漂移率 μ \mu μ和波动率 σ \sigma σ都为常数, d z dz dz为维纳过程(布朗运动)随机项。

       
如果我们在时刻 t = 0 t=0 t=0 观察,此时资产价格为 S 0 S_0 S0。对于执行日期为 T T T,执行价格为 K K K的欧式看涨或看跌期权,我们知道根据Black-Scholes-Merton 欧式期权定价公式,它们的价格可以表示为

  • 看涨期权
    c = S 0 N ( d 1 ) − K e − r T N ( d 2 )      , c = S_0N(d_1)-Ke^{-rT}N(d_2)\;\;, c=S0N(d1)KerTN(d2),
  • 看跌期权
    p = K e − r T N ( − d 2 ) − S 0 N ( − d 1 )      . p = Ke^{-rT}N(-d_2)-S_0N(-d_1)\;\;. p=KerTN(d2)S0N(d1).
    这里的 r r r为无风险利率,也假设为常数。 N ( ) N() N()函数为标准正态分布累计概率函数,可以用scipy.stats.norm.cdf()计算。
    d 1 d_1 d1 d 2 d_2 d2为:
    d 1 = ln ⁡ S 0 K + ( r + 1 2 σ 2 ) T σ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值