第1节 欧式期权价格
1.1 简介
考虑期权对应的资产价格为 S ( t ) S(t) S(t), 记为 S S S,它的变化过程为几何布朗运动,
d S S = μ d t + σ d z . \frac{dS}{S} = \mu dt + \sigma dz \;\;. SdS=μdt+σdz.
这里假设漂移率 μ \mu μ和波动率 σ \sigma σ都为常数, d z dz dz为维纳过程(布朗运动)随机项。
如果我们在时刻 t = 0 t=0 t=0 观察,此时资产价格为 S 0 S_0 S0。对于执行日期为 T T T,执行价格为 K K K的欧式看涨或看跌期权,我们知道根据Black-Scholes-Merton 欧式期权定价公式,它们的价格可以表示为
- 看涨期权
c = S 0 N ( d 1 ) − K e − r T N ( d 2 ) , c = S_0N(d_1)-Ke^{-rT}N(d_2)\;\;, c=S0N(d1)−Ke−rTN(d2), - 看跌期权
p = K e − r T N ( − d 2 ) − S 0 N ( − d 1 ) . p = Ke^{-rT}N(-d_2)-S_0N(-d_1)\;\;. p=Ke−rTN(−d2)−S0N(−d1).
这里的 r r r为无风险利率,也假设为常数。 N ( ) N() N()函数为标准正态分布累计概率函数,可以用scipy.stats.norm.cdf()
计算。
d 1 d_1 d1和 d 2 d_2 d2为:
d 1 = ln S 0 K + ( r + 1 2 σ 2 ) T σ