【论文阅读】Multiple instance classification: Review, taxonomy and comparative study

1、基本信息

@article{AMORES201381,
title = {Multiple instance classification: Review, taxonomy and comparative study},
journal = {Artificial Intelligence},
volume = {201},
pages = {81-105},
year = {2013},
issn = {0004-3702},
doi = {https://doi.org/10.1016/j.artint.2013.06.003},
url = {https://www.sciencedirect.com/science/article/pii/S0004370213000581},
author = {Jaume Amores},
keywords = {Multi-instance learning, Codebook, Bag-of-Words},
abstract = {Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problem have been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e., leaving out other learning tasks such as regression). In order to perform our study, we implemented fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL methods.}
}

2、介绍

本文对MIC(Multiple Instance Classifification)算法进行了分析与分类,并进行了详尽的比较分析。具体包括:
1)通过例子详细阐述了使用MIC的必要性;

2)描述了MIC问题以及所提出的分类算法;

3)描述了分类算法的主要范式:实例空间范式、包空间范式和嵌入空间范式;

3、多示例分类问题

常见的多示例分类问题有:药物活性预测问题与图像分类问题。以图像分类问题为例,通常的程序是:首先提取图像中的区域集合,并且对于每个区域我们获得一个视觉描述符。该视觉描述符是一个用于描述区域的特征向量。因此,图像被描述为一个包 X = { x 1 ⃗ , . . . , x N ⃗ } X=\left \{ \vec{x_{1}},..., \vec{x_{N}} \right \} X={x1 ,...,xN },其中 N N N是提取的区域数量, x i x_{i} xi是描述图像的第 i i i个区域的特征向量(即实例)。

4、范式的基本概念与概述

常见包级分类是估计一个分类函数 F ( X ) ∈ [ 0 , 1 ] F(X)∈[0,1] F(X)[0,1]来预测一个包是正是负;同时还有实例集分类,即直接对实例进行操作。

4.1 分类方法概述

·对于实例空间范式(Instance-Space(IS)Paradigm),判别性信息是实例级别的。学习过程为:训练一个实例级分类器 f ( x ⃗ ) f(\vec{x} ) f(x )来从在将正包实例与负包实例分开。

在这里插入图片描述

基于此,给定一个新的包 X X X,可以通过计算实例级分数 f ( x ⃗ ) , x ∈ X f(\vec{x} ),x∈X f(x )xX来得到包级分类器 F ( X ) F(X) F(X)。该机制基于局部,即实例级信息。考虑单个实例信息而无需考虑包的整体特征。

·对于包空间范式(Bag-Space(BS) paradigm),每个包被视为一个独立个体,分类过程在包之间进行。判别性包级分类器 F ( X ) F(X) F(X)利用包信息来决定包的类别。
该机制基于全局,即包级信息。需要考虑整个包的信息。

由于包空间都是非向量空间,因此BS算法利用了非向量学习技术。现存所有的非向量技术都是通过定义一个距离函数 D ( X , Y ) D(X,Y) D(X,Y)来进行的。
在这里插入图片描述

·对于嵌入空间机制(Embedded-Space paradigm),每个包 X X X被映射为一个带有包相关信息的特征向量,原始包空间被映射为一个向量嵌入空间,并训练分类器。该方法有效地将原始的多示例分类问题转换为一个标准的有监督学习问题(每个特征向量都有其标签)

在这里插入图片描述
给定映射后特征向量,包级分类器 F ( X ) F(X) F(X)能够表示为 F ( X ) = G ( v ⃗ ) F(X)=G(\vec{v}) F(X)=G(v ) G G G为映射空间中的标准分类器。

最后,我们可以根据是否关注实例级信息、全局、局部信息来选择特定方法进行分类。

4.2 例子

若正实例与负实例都在对应的包中,即包中仅有单一类别的实例,那么该分类问题可以在IS上学习

若两类实例都出现在正包或负包中,那么就不能在IS上学习。如图:
在这里插入图片描述
观察发现,正包同时包含了两种类别的实例,而负包要么是包含了第1类实例,要么包含了第2类实例,但不是同时包含两类实例。此时就必须学习一个关于整个包组成的包级模型

在这里插入图片描述
图中则是该现象在现实例子的体现。要将图片分类为海滩,就必须包含三种实例:沙滩类、沙子类、海类。若无法同时满足这三类,则为负包,否则为正包。

5、IS范式、ES范式与嵌入式空间范式

IS范式:基于实例级分类器,包级分类 F ( X ) ∈ [ 0 , 1 ] F(X)∈[0,1] F(X)[0,1]是基于实例级得分的聚合:
F ( X ) = f ( x 1 ⃗ ) ∘ f ( x 2 ⃗ ) ∘ . . . ∘ f ( x N ⃗ ) Z (1) F(X)=\frac{f(\vec{x_{1}})\circ f(\vec{x_{2}})\circ ...\circ f(\vec{x_{N}})}{Z}\tag{1} F(X)=Zf(x1 )f(x2 )...f(xN )(1)
其中, ∘ \circ 表示聚合算子。 Z Z Z表示可选的归一化因子,如 Z = N ( 实例数 ) Z=N(实例数) Z=N(实例数) Z = 1 Z=1 Z=1

BS范式:将包 X X X视为一个整体,学习过程在包空间中进行。通过距离函数 D ( X , Y ) D(X,Y) D(X,Y)来比较任意的两个包 X X X Y Y Y,并将该距离函数插入到一个标准的基于距离的分类器中,如:KNN、SVM。

本文讨论的距离函数主要有三种:minimal Hausdorff distance、Earth Movers Distance (EMD)、 the Chamfer distance。它们的距离函数分别为:
D ( X , Y ) = min ⁡ x ⃗ ∈ X , y ⃗ ∈ Y ∣ ∣ x ⃗ − y ⃗ ∣ ∣ (2) D(X,Y)=\min_{\vec{x}∈X,\vec{y}∈Y}||\vec{x}-\vec{y}||\tag{2} D(X,Y)=x X,y Ymin∣∣x y ∣∣(2)
D ( X , Y ) = ∑ i ∑ j w i j ∣ ∣ x ⃗ − y ⃗ ∣ ∣ ∑ i ∑ j w i j (3) D(X,Y)=\frac{\sum_{i}\sum_{j}w_{ij}||\vec{x}-\vec{y}||}{\sum_{i}\sum_{j}w_{ij}}\tag{3} D(X,Y)=ijwijijwij∣∣x y ∣∣(3)
D ( X , Y ) = 1 ∣ X ∣ ∑ x ⃗ ∈ X min ⁡ y ⃗ ∈ Y ∣ ∣ x ⃗ − y ⃗ ∣ ∣ + 1 ∣ Y ∣ ∑ y ⃗ ∈ Y min ⁡ x ⃗ ∈ X ∣ ∣ x ⃗ − y ⃗ ∣ ∣ (4) D(X,Y)=\frac{1}{|X|}\sum_{\vec{x}∈X}\min_{\vec{y}∈Y}||\vec{x}-\vec{y}||+\frac{1}{|Y|}\sum_{\vec{y}∈Y}\min_{\vec{x}∈X}||\vec{x}-\vec{y}||\tag{4} D(X,Y)=X1x Xy Ymin∣∣x y ∣∣+Y1y Yx Xmin∣∣x y ∣∣(4)
其中, w i j w_{ij} wij代表权值。

除了距离函数,还需要核函数 K ( X , Y ) K(X,Y) K(X,Y)来度量包 X X X Y Y Y之间的相似程度:
K ( X , Y ) = ∑ x ⃗ ∈ X , y ⃗ ∈ Y k ( x ⃗ , y ⃗ ) p (5) K(X,Y)=\sum_{\vec{x}∈X,\vec{y}∈Y}k(\vec{x},\vec{y})^{p}\tag{5} K(X,Y)=x X,y Yk(x ,y )p(5)
其中, k ( x ⃗ , y ⃗ ) k(\vec{x},\vec{y}) k(x ,y )是实例级核函数,通常选取线性、多项式或高斯核函数,以衡量实例间的相似性。

ES范式:以一种显式的方式来综合整个包的信息,通过定义一个映射函数 M : X ↦ v ⃗ \mathcal{M}:X\mapsto\vec{v} MXv 将包 X X X映射称为向量 v ⃗ \vec{v} v ,以此来综合整个包的特征信息。不同的映射函数强调了不同类型的信息。
现有的ES算法可以大致分为两类:

1)ES methods without vocabularies

该类算法仅将包中的所有实例属性进行汇总统计,而没有对实例进行任何区分。如Simple MI算法,仅仅是简单的将每个包 X X X映射为其内部实例的平均向量:
M ( X ) = 1 ∣ X ∣ ∑ x ⃗ ∈ X x ⃗ (6) \mathcal{M}(X)=\frac{1}{|X|}\sum_{\vec{x}∈X}\vec{x}\tag{6} M(X)=X1x Xx (6)
有学者提出将每个包映射为一个max-min向量,即:
M ( X ) = ( a 1 , . . . , a d , b 1 , . . . , b d ) (7) \mathcal{M}(X)=(a_{1},...,a_{d},b_{1},...,b_{d})\tag{7} M(X)=(a1,...,ad,b1,...,bd)(7)
其中, a j = min ⁡ x ⃗ ∈ X x j a_{j}=\min_{\vec{x}∈X}x_{j} aj=minx Xxj b j = max ⁡ x ⃗ ∈ X x j , j = 1 , . . . , d b_{j}=\max_{\vec{x}∈X}x_{j},j=1,...,d bj=maxx Xxj,j=1,...,d d d d为实例的维度。

但是当实例的类别数量较大时,使用该算法来描述所有实例会导致效果不佳

2)Vocabulary-based methods

该类算法的特别之处在于:为了嵌入需要区分不同类别的实例,因此包中的实例将被分类。但通常是以无监督的方式得到这些实例的类,即它们并没有标签。
Vocabulary中拥有训练集中存在的所有类别实例的信息。这些信息通常用于对一个包中的实例进行分类,并且将分类处理后的包进行嵌入。

以基于聚类的Vocabulary-based methods为例:将包中的实例分簇,某些簇包含了来自两个类的实例:
在这里插入图片描述
再将分类后的包进行映射(图中为直方图映射),发现:两类实例比例较相似的包为正包,而负包只含一类实例。因此,该方法可以区分正包和负包。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值