【Datawhale组队学习】机器学习数学基础 - 一元函数微分学的几何应用【Task 04】

一元函数微分学的几何应用

极值与最值

极值与最值的区别在于判断的区域不同:

  • 极值是局部的概念,仅针对 x 0 x_0 x0邻域的小范围区域,判断是否为极大值或极小值;
  • 而最值的对全体定义域,找到其中的最大值或最小值。

而极值与最值又都具有广义与真正的定义:

  • 广义的定义是指在 x 0 x_0 x0邻域内,寻找极值或最值;
  • 而真正的定义是指在 x 0 x_0 x0去心邻域内,寻找极值或最值。所以,极值点与连续性无关,仅关注极值点的去心邻域与 x 0 x_0 x0的关系即可(即使 x 0 x_0 x0的两侧为第二类间断点也无所谓)。

极值点与最值点没有必然关系,极值点不一定是点,最值点也不一定是极值点。但是,若最值点不在端点处,那么最值点一定是极值点。

单调性与极值点的判断

利用导数判断单调性

对定义域 I I I上的 f ( x ) f(x) f(x)求导,

  • 若在定义域 I I I f ′ ( x ) > 0 f'(x) > 0 f(x)>0恒成立,那么 f ( x ) f(x) f(x)在定义域上严格单调递增;
  • 若在定义域 I I I f ′ ( x ) < 0 f'(x) < 0 f(x)<0恒成立,那么 f ( x ) f(x) f(x)在定义域上严格单调递减。

一阶可导点是极值点的必要条件

所谓必要条件,就是可以拿来用的性质。

x 0 x_0 x0为一阶可导点,那么 f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0

判断极值的充分条件

所谓充分条件,就是用来证明极值的。

  1. 第一充分条件
    简单来说,就是 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0连续
    • f ′ ( x ) f'(x) f(x) x 0 x_0 x0的去心邻域两侧符号相反,那么该点为极值点;
    • f ′ ( x ) f'(x) f(x) x 0 x_0 x0的去心邻域两侧不变号,则不是极值点。
  2. 第二充分条件
    f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0二阶可导,且 f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0 f ′ ′ ( x 0 ) ≠ 0 f''(x_0) \neq 0 f(x0)=0
    • f ′ ′ ( x 0 ) < 0 f''(x_0) < 0 f(x0)<0,那么 f ( x 0 ) f(x_0) f(x0) x = x 0 x = x_0 x=x0处取得极大值;
    • f ′ ′ ( x 0 ) > 0 f''(x_0) > 0 f(x0)>0,那么 f ( x 0 ) f(x_0) f(x0) x = x 0 x = x_0 x=x0处取得极小值;
  3. 第三充分条件
    由第二充分条件扩展推导出, f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0n阶可导,且前n-1阶导数为0, f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0) \neq 0 f(n)(x0)=0
    • 那么n为偶数时,
      • f ( n ) ( x 0 ) < 0 f^{(n)}(x_0) < 0 f(n)(x0)<0,那么 f ( x 0 ) f(x_0) f(x0) x = x 0 x = x_0 x=x0处取得极大值;
      • f ( n ) ( x 0 ) > 0 f^{(n)}(x_0) > 0 f(n)(x0)>0,那么 f ( x 0 ) f(x_0) f(x0) x = x 0 x = x_0 x=x0处取得极小值;
    • n为奇数时为拐点

凹凸性与拐点

凹凸性的定义

以下的凹凸性以同济大学第四版的凹凸性定义为准(考研以此为准),但是在较多数学类教材中恰恰相反。

设函数在 f ( x ) f(x) f(x)在区间 I I I内连续,任取两点 x 1 x_1 x1 x 2 x_2 x2,对 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1),恒有
f ( λ x 1 + ( 1 − λ ) x 2 ) < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1+(1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda) f(x_2) f(λx1+(1λ)x2)<λf(x1)+(1λ)f(x2)
那么称函数为凹函数。

Jenson不等式
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]的凹函数,则对任意的 x i ∈ [ a , b ] x_i \in [a,b] xi[a,b] λ i > 0 \lambda_i > 0 λi>0,且 ∑ i = 1 n λ i = 1 \sum_{i = 1}^n \lambda_i = 1 i=1nλi=1,有
f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) f(\sum^n_{i = 1} \lambda_i x_i) \leq \sum^n_{i = 1}\lambda_i f(x_i) f(i=1nλixi)i=1nλif(xi)

拐点

拐点就是凹凸区域的交界点。

需要注意的是,极值点和最值点都是一个x轴的值,而拐点是一个坐标

凹凸性与拐点的判别

判断凹凸性

函数 f ( x ) f(x) f(x) I I I二阶可导

  • f ′ ′ ( x ) > 0 f''(x) > 0 f(x)>0,则 f ( x ) f(x) f(x)的图像是凹的;
  • f ′ ′ ( x ) < 0 f''(x) < 0 f(x)<0,则 f ( x ) f(x) f(x)的图像是凸的;

二阶可导点是拐点的必要条件

( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点,那么 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f(x0)=0

判断拐点的充分条件

  1. 第一充分条件
    f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0连续,且去心邻域内二阶导数存在,且在 x = x 0 x = x_0 x=x0的左右邻域内 f ′ ′ ( x 0 ) f''(x_0) f(x0)变号,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。
  2. 第二充分条件
    f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0的邻域内三阶可导,且 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f(x0)=0 f ′ ′ ′ ( x 0 ) ≠ 0 f'''(x_0) \neq 0 f(x0)=0,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点
  3. 第三充分条件
    在判断极值的第三充分条件提到过, f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0n阶可导,且前n-1阶导数为0, f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0) \neq 0 f(n)(x0)=0,n为奇数时, ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。

渐近线

渐近线可以分为斜渐近线和垂直渐近线,斜渐近线在k为0的时候,可以包含水平渐近线。

最值或取值范围

寻找最值的话只需要去判断几个可疑点

  1. 驻点
  2. 不可导点
  3. f(a)
  4. f(b)
闭区间[a,b]最值

在闭区间内寻找最值,是寻找4个可疑点中的最值,即为该闭区间内的最值。

开区间(a,b)最值

在开区间内寻找最值,是寻找驻点和不可导点的最值,并且要计算端点的极限值 lim ⁡ x → a + f ( x ) \lim_{x \rightarrow a^+}f(x) limxa+f(x) lim ⁡ x → b − f ( x ) \lim_{x \rightarrow b^-}f(x) limxbf(x),比较四者的大小,若最值在驻点和不可导点中,则存在;若最值在极限值中,则无法取到该点,则不存在极值。


以上内容是DataWhale第28期组队学习,根据b站视频考研数学之高等数学(一二三都适用)学习整理所得,若有不足,望指出。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值