LSCM最小二乘保角参数化

本文介绍了LSCM(Least Squares Conformal Maps)最小二乘保角参数化的概念,包括最小二乘思想、梯度概念和保角映射的详细步骤。通过数学公式阐述了如何在三维空间中对三角形进行二维平面的映射,以尽可能保持角度不变。最后讨论了解决方案,包括固定点的选择和线性系统的构建,并提及了实际应用中的算法结果和参考论文。
摘要由CSDN通过智能技术生成

LSCM最小二乘保角参数化

最小二乘思想

已知一组点的数据(x,y)

x x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x n x_n xn
y y 1 y_1 y1 y 2 y_2 y2 y 3 y_3 y3 y n y_n yn

可以近似为线性关系 y = a x + b y=ax+b y=ax+b ,目标为确定常数 a a a b b b

解法:找到 a a a b b b ,使得所有 y i y_i yi a x i + b ax_i+b axi+b 偏差的平方和
Q = ∑ i = 1 n ( y i − a x i − b ) 2 Q=\sum_{i=1}^n(y_i-ax_i-b)^2 Q=i=1n(yiaxib)2

最小,此方法为最小二乘法, y = a x + b y=ax+b y=ax+b 视为 y y y x x x 之间的近似函数关系

确定常数 a a a b b b ,使用函数求无条件极值的方法,让 Q Q Q a a a b b b 分别求导通过求其驻点来得到 Q Q Q 的极值点,令
∂ Q ∂ a = − 2 ∑ i = 1 n ( y i − a x i − b ) x i = ( 2 ∑ i = 1 n x i 2 ) a + ( 2 ∑ i = 1 n x i ) b − 2 ∑ i = 1 n x i y i = 0 \frac{\partial Q}{\partial a}=-2\sum_{i=1}^n(y_i-ax_i-b)x_i=(2\sum_{i=1}^nx_i^2)a+(2\sum_{i=1}^nx_i)b-2\sum_{i=1}^nx_iy_i=0 aQ=2i=1n(yiaxib)xi=(2i=1nxi2)a+(2i=1nxi)b2i=1nxiyi=0

∂ Q ∂ b = − 2 ∑ i = 1 n ( y i − a x i − b ) = ( 2 ∑ i = 1 n x i ) a + ( 2 ∑ i = 1 n 1 ) b − 2 ∑ i = 1 n y i = 0 \frac{\partial Q}{\partial b}=-2\sum_{i=1}^n(y_i-ax_i-b)=(2\sum_{i=1}^nx_i)a+(2\sum_{i=1}^n1)b-2\sum_{i=1}^ny_i=0 bQ=2i=1n(yiaxib)=(2i=1nxi)a+(2i=1n1)b2i=1nyi=0

于是得到线性方程组
( ∑ i = 1 n x i 2 ∑ i = 1 n x i ∑ i = 1 n x i n ) ( a b ) = ( ∑ i = 1 n x i y i ∑ i = 1 n y i ) \left(\begin{matrix} \sum_{i=1}^nx_i^2&\sum_{i=1}^nx_i\\ \sum_{i=1}^nx_i&n \end{matrix}\right) \left(\begin{matrix} a\\ b \end{matrix}\right)= \left(\begin{matrix} \sum_{i=1}^nx_iy_i\\ \sum_{i=1}^ny_i \end{matrix}\right) (i=1nxi2i=1nxii=1nxin)(ab)=(i=1nxiyii=1nyi)
接下来就可以通过矩阵求解解出 a a a b b b的值

梯度的概念

假设有一向量值函数 f f f ,在三角形的三个点处值已知记为 f ( x i ) = f i = ( u i , v i ) f(\pmb{x_i})=f_i=(u_i,v_i) f(xixixi)=fi=(ui,vi) f ( x j ) = f j = ( u j , v j ) f(\pmb{x_j})=f_j=(u_j,v_j) f(xjxjxj)=fj=(uj,vj) f ( x k ) = f k = ( u k , v k ) f(\pmb{x_k})=f_k=(u_k,v_k) f(xkxkxk)=fk=(uk,vk) , 在三角形的其他点处对其进行插值如图所示

在这里插入图片描述

f ( x ) = f i B i ( x ) + f j B j ( x ) + f k B k ( x ) f(\pmb{x})=f_iB_i(\pmb{x})+f_jB_j(\pmb{x})+f_kB_k(\pmb{x}) f(xxx)=fiBi(xxx)+fjBj(xxx)+fkBk(xxx)
其中 B i ( x ) = S i ( x ) S B_i(\pmb{x})=\frac{S_i(\pmb{x})}{S} Bi(xxx)=SSi(xxx) S i ( x ) S_i(\pmb{x}) Si(xxx) 为点 x i x_i xi 的对边与点 x x x 所构成的三角形面积, S S S 为原三角形的面积,于是
▽ f ( x ) = f i ▽ B i ( x ) + f j ▽ B j ( x ) + f k ▽ B k ( x ) \triangledown f(\pmb{x})=f_i\triangledown B_i(\pmb{x})+f_j\triangledown B_j(\pmb{x})+f_k\triangledown B_k(\pmb{x}) f(xxx)=fiBi(xxx)+f

  • 19
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值