正则化定义和类别

正则化定义和类别

什么是正则化:
	在解决回归过拟合中,我们选择正则化,但对于其他机器学习算法如分类算法来说也会出现这种问题,数据提供的特征有那些影响模型复杂度或者这个特征的数据点异常比较多,所以算法在学习的时候尽量减少这个特征的影响,就是正则化
L2正则化:

作用可以使其中一些W的都很小都接近于0,削落某个特征的影响

优点:越小的参数水明越简单越简单的模型与不容易产生过拟合

RIdge回归:

L1正则化

作用:可以使的其中的一些W为0,删除这个特征影响。

Lasso回归

岭回归是在结构风险最小化的正则化因子上使用模型参数向量的二范数形式。那么,如果使用一范数形式,那就是lasso回归了。lasso回归相比于岭回归,会比较极端。它不仅可以解决过拟合问题,而且可以在参数缩减过程中,将一些重复的没必要的参数直接缩减为零,也就是完全减掉了。这可以达到提取有用特征的作用。但是lasso回归的计算过程复杂,毕竟一范数不是连续可导的。关于lasso回归相关的研究是目前比较热门的领域。

在深度学习中,Softmax正则化是一种用于提高模型性能和泛化能力的技术。它通过在损失函数中引入正则化项来减小模型的复杂度,防止过拟合,并提高模型的概率校准能力。 Softmax正则化的具体步骤如下: 1. 计算模型的logits,即模型对每个类别的预测得分。 2. 将logits输入到Softmax函数中,将其转换为概率分布。 3. 使用交叉熵损失函数来比较模型的预测概率分布与真实标签之间的差异。 4. 引入正则化项,将其添加到损失函数中。正则化项通常是模型参数的L2范数,用于惩罚模型的复杂度。 通过引入正则化项,Softmax正则化可以限制模型的参数,使其更加平滑和简单,从而提高模型的泛化能力和概率校准能力。 以下是一个使用PyTorch实现Softmax正则化的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义模型 class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.fc = nn.Linear(10, 2) # 假设输入维度为10,输出维度为2 def forward(self, x): x = self.fc(x) return x # 定义损失函数和优化器 model = Model() criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 optimizer = optim.SGD(model.parameters(), lr=0.01) # 随机梯度下降优化器 # 训练模型 for epoch in range(num_epochs): # 前向传播 outputs = model(inputs) loss = criterion(outputs, labels) # 添加正则化项 l2_reg = torch.tensor(0.) for param in model.parameters(): l2_reg += torch.norm(param, 2) # L2范数 loss += lambda_reg * l2_reg # lambda_reg是正则化系数 # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上述代码中,我们首先定义了一个包含一个线性层的简单模型。然后,我们使用交叉熵损失函数来计算模型的损失,并在损失函数中添加了L2正则化项。最后,我们使用随机梯度下降优化器来更新模型的参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Calorie_Wu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值