前言
NumPy是一个开源的Python科学计算库,广泛用于数据分析、机器学习、科学计算和金融领域。它由Travis Oliphant等人在2005年开发,并在BSD许可下发布。NumPy是许多其他科学计算库的基础,如SciPy、Pandas和Matplotlib。
Numpy官网
学习参考链接:
要安装NumPy,可以使用pip:
pip install numpy
Numpy相对List的优势和特点
1、Numpy的数据结构是array数组
2、相较List的性能更好,并且包含大量的便捷的函数,以及数组中元数据的信息
3、array的数据类型必须一致,为int或者float,因此性能更高
1、创建数组
import numpy as np
#创建一维数组
x=np.array([1,2,3,4,5,6])
#创建二维数组
y=np.array([
[1,2,3],
[4,5,6]
])
print("x=",x)
print("y=",y)
x= [1 2 3 4 5 6]
y= [[1 2 3]
[4 5 6]]
2、array的属性
import numpy as np
#创建二维数组
y=np.array([
[1,2,3],
[4,5,6]
])
# 数组形状
print("y.shape",y.shape)
# 数组维度
print("y.ndim",y.ndim)
# 所有数据的数目
print("y.size",y.size)
# 数据的类型
print("y.dtype",y.dtype)
y.shape (2, 3)
y.ndim 2
y.size 6
y.dtype int32
3、创建array的便捷函数
3.1 np.arange
import numpy as np
#使用arrange创建数组序列
#arange(start,stop,step,dtype=None),左闭右开
x=np.arange(12)
y=np.arange(2,10,2)
print("x=",x)
print("y=",y)
x= [ 0 1 2 3 4 5 6 7 8 9 10 11]
y= [2 4 6 8]
3.2 np.ones
import numpy as np
#使用ones创建全为1的数组序列
#ones(shape,dtype=None,order='C')
x=np.ones(12)
y=np.ones((2,3))
print("x=",x)
print("y=",y)
x= [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
y= [[1. 1. 1.]
[1. 1. 1.]]
3.3 np.ones_like
import numpy as np
#使用ones_like创建全为0的形状相同的数组序列
#ones_like(x,dtype=None)
x=np.arange(12).reshape(3,4)
y=np.ones_like(x)
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[1 1 1 1]
[1 1 1 1]
[1 1 1 1]]
3.4 np.empty
empty的数据是未初始化的数据,里面的值是随机值不能直接使用
import numpy as np
#使用empty创建全为0的数组序列
#empty(shape,dtype=None,order='C')
x=np.empty(10)
y=np.empty((2,5))
print("x=",x)
print("y=",y)
x= [6.23042070e-307 1.89146896e-307 1.37961302e-306 6.23053614e-307
1.60218627e-306 6.23061763e-307 6.23059386e-307 6.23058028e-307
8.90100844e-307 2.39277352e-203]
y= [[-5.74929044e-186 -3.41963150e+202 8.38577217e-253 -4.80176796e+207
-8.30082508e+049]
[ 5.69602577e-219 2.08987787e-290 5.64286538e+290 2.34477072e+222
-1.62584672e+000]]Process finished with exit code 0
3.5 np.empty_like
import numpy as np
#使用empty_like创建全为1的形状相同的数组序列
#empty_like(x,dtype=None)
x=np.arange(12).reshape(3,4)
y=np.empty_like(x)
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]
3.6 np.full
import numpy as np
#使用full创建指定值的数组序列
#full(shape,fill_vaule,dtype=None,order='C')
x=np.full(5,10)
y=np.full((2,5),10)
print("x=",x)
print("y=",y)
x= [10 10 10 10 10]
y= [[10 10 10 10 10]
[10 10 10 10 10]]
3.7 np.full_like
import numpy as np
#使用full_like创建填充指定值的形状相同的数组序列
#full_like(x,fill_vaule,dtype=None)
x=np.arange(12).reshape(3,4)
y=np.full_like(x,666)
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[666 666 666 666]
[666 666 666 666]
[666 666 666 666]]
3.8 np.random.randn
import numpy as np
#使用rand创建随机数组序列
#randn(d0,d1,d2...)
x=np.random.randn(4)
y=np.random.randn(4,3)
z=np.random.randn(4,3,2)
print("x=",x)
print("y=",y)
print("z=",z)
x= [-0.6814137 2.58645822 -0.32107098 -1.16734569]
y= [[-0.12104364 -0.60353561 -0.70747402]
[-0.78172178 0.56876222 -0.89172026]
[-0.35139011 -0.53920652 0.66813472]
[ 0.6570334 -0.59396372 -2.36066397]]
z= [[[ 0.18886269 0.40312599]
[-0.15651529 -0.28551847]
[ 0.41414574 1.76023497]][[-0.79363865 0.62441301]
[ 2.09764425 2.08595285]
[-0.77915632 0.8259647 ]][[ 0.31214999 1.54711407]
[ 0.90644711 0.76644429]
[-1.59445626 1.29589803]][[ 0.97082177 -1.52600754]
[ 1.4742554 0.07321613]
[-0.1599697 0.19982069]]]
4、array用于操作及函数
4.1 shape
import numpy as np
x=np.arange(12).reshape(3,4)
print(x.shape)
(3, 4)
4.2 数组+1
与list的区别在于是对数组内的所有的数字同时操作,而list对所有的数字同时操作则需要用for循环实现。
import numpy as np
#array+1是对数组内的所有的元素进行加1
x=np.arange(12).reshape(3,4)
y=x+1
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
4.3 数组*3
import numpy as np
#array*3是对数组内的所有的元素进行*3
x=np.arange(12).reshape(3,4)
y=x*3
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[ 0 3 6 9]
[12 15 18 21]
[24 27 30 33]]
4.4 sin(数组)
import numpy as np
#np.sin(array)是对数组内的所有的元素进行sin
x=np.arange(12).reshape(3,4)
y=np.sin(x)
print("x=",x)
print("y=",y)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[ 0. 0.84147098 0.90929743 0.14112001]
[-0.7568025 -0.95892427 -0.2794155 0.6569866 ]
[ 0.98935825 0.41211849 -0.54402111 -0.99999021]]
4.5 array间的加减操作
import numpy as np
#np.sin(array)是对数组内的所有的元素进行sin
x=np.arange(12).reshape(3,4)
y=np.random.randint(1,10,(3,4))
print("x=",x)
print("y=",y)
z=x+y
w=x-y
print("z=",z)
print("w=",w)
x= [[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
y= [[3 6 2 1]
[8 2 7 1]
[6 7 5 9]]
z= [[ 3 7 4 4]
[12 7 13 8]
[14 16 15 20]]
w= [[-3 -5 0 2]
[-4 3 -1 6]
[ 2 2 5 2]]