数据集——红外光数据集

1. SCUT FIR Pedestrian Dataset

2. FREE Teledyne FLIR Thermal Dataset

3. LLVIP Dataset

4. M3FD Dataset

5. DUT-VTUAV Dataset

6. KAIST Dataset

7. RoadScene Dataset

8. Freiburg Thermal Dataset

9. TNO Dataset

10. INO Dataset

11. MSRS Dataset

12. LSOTB-TIR Dataset

13. MFNet(multispectral semantic segementation dataset)

15. SIRST-AUG Dataset

16. MDvsFA-cGAN

17. IRSTD-1k Dataset

18. OTCBVS Dataset

19. BU-TIV (Thermal Infrared Video)


1. SCUT FIR Pedestrian Dataset

1.1数据集简介

  1. 数据集类型:远红外行人检测数据集
  2. 图像序列时长:大约11小时
  3. 帧率:每秒25帧
  4. 获取方式:通过在速度低于80公里/小时的多种交通场景中行驶获得
  5. 收集地点:中国广州的11个路段
  6. 场景分类:市中心、郊区、高速公路、校园
  7. 图像帧数量:211,011帧
  8. 边界框总数:477,907个
  9. 数据集类别:walk person、ride person、squat person、people、person?、people?

图1:SCUT FIR Pedestrain示例图

1.2 数据集划分

1.3 相关链接

数据集提取码为:x9lh,数据集标注提取码为:uczk

2. FREE Teledyne FLIR Thermal Dataset

2.1数据集简介

  1. 图像对数量:提供了10k张光-红外图像对。
  2. 图像对校正:图像对没有对准,需要在进行融合前进行校正。
  3. 数据集类型:多通道图像数据集,包含可见光和热成像数据。
  4. 适用研究领域:适用于图像融合算法的研究。
  5. 数据集组成:

图像:9,711张热成像图像和9,233张RGB训练/验证图像。

视频:7,498帧视频。

  1. 数据集类别:包含以下类别的标注:Person(行人)、Bike(自行车)、Car(汽车)、Motorcycle(摩托车)、Bus(公交车)、Train(火车)、Truck(卡车)、Traffic light(交通灯)、Fire Hydrant(消防栓)、Street Sign(街道标志)、Dog(狗)、Skateboard(滑板)、Stroller(婴儿车)、Scooter(电动车)、Other Vehicle(其他车辆)

图2:FREE Teledyne FLIR Thermal Dataset 示例图

2.2 相关链接

3. LLVIP Dataset

3.1 数据集简介

  1. 数据集类型:可见光-红外数据集
  2. 应用目的:用于热红外和可见光行人检测
  3. 拍摄环境:大部分图像是在非常黑暗的场景下拍摄的
  4. 数据集特点:用于低光视觉的可见光-红外配对数据集
  5. 图像数量:包含30,976张图像
  6. 图像对齐:所有图像在时间和空间上都严格对齐
  7. 主要类别:行人

图3:LLVIP Dataset 示例图

3.2 相关链接

4. M3FD Dataset

4.1 数据集简介

  1. 数据集类型:热红外-可见光图像目标检测数据集
  2. 传感器配置:一个同步系统,包含一个双目光学摄像头和一个双目红外传感器。
  3. 图像总数:8400张图像用于融合、检测和基于融合的检测。600张独立场景图像用于融合。
  4. 图像格式:红外图像:24位灰度位图。可见光图像:24位彩色位图。
  5. 图像尺寸:大多数为1024 × 768像素。
  6. 配准情况:所有图像对都已配准。可见光图像通过使用同步系统的内部参数进行校准。红外图像通过齐次矩阵人为扭曲进行校准。
  7. 标注信息:34407个标记已手动标记。包含6种目标类别:People(人)、Car(汽车)、Bus(公交车)、Motorcycle(摩托车)、Lamp(灯)、Truck(卡车)

图4:M3FD Dataset 示例图

4.2 相关链接

5. DUT-VTUAV Dataset

5.1 数据集简介

  1. 数据集应用:用于无人机的单目标跟踪。
  2. 图像类型:基于热红外和可见光图像。
  3. 图像对数量:收集了近170万对对齐良好的RGB-T图像对。
  4. 适用任务:短期跟踪、长期跟踪、带有分割的跟踪
  5. 子类别:13个子类别。
  6. 场景:15个场景。
  7. 城市:跨越2个城市。

图5:DUT-VTUAV Dataset 示例图

5.2 相关链接

6. KAIST Dataset

6.1 数据集简介

  1. 数据集应用:热红外和可见光的联合行人检测
  2. 图像总数:95328张图片
  3. 图像版本:每张图片包含RGB彩色图像和红外图像两个版本
  4. 注释总数:103128个密集注释
  5. 场景类型:校园、街道、乡下
  6. 场景特点:包括白天和晚上捕获的各种常规交通场景
  7. 图片大小:640×480像素
  8. 标签类别:person:比较好区分的个体、people:不太好分辨的多个个体、cyclist:骑行的人、person?:标注者无法明确区分是行人还是其他物体的区域

图6:KAIST 示例图

6.2 相关链接

7. RoadScene Dataset

7.1 数据集简介

  1. 数据集特点:对齐的图片,没有语义标签。多通道图像数据集。
  2. 图像对数量:包含221对对齐良好的可见光(Vis)和红外(IR)图像对。
  3. 场景内容:包含丰富的场景,如道路、车辆、行人等。
  4. 图像预处理:对原始红外图像中的背景热噪声进行了预处理。精确对齐了可见光和红外图像对。裁剪出确切的配准区域。

图7:RoadScene Dataset示例图

7.2 相关链接

8. Freiburg Thermal Dataset

8.1 数据集简介

  1. 数据集类型:RGB-热成像图像对数据集
  2. 图像数量:超过20,000对时间同步和对齐的图像对
  3. 标注情况:没有标注

图8:Freiburg Thermal Dataset示例图

8.2 相关链接

9. TNO Dataset

9.1 数据集简介

  1. 数据集类型:单通道图像数据集
  2. 内容特点:包含不同军事相关场景的多光谱夜间图像
  3. 光谱类型:增强视觉、近红外、长波红外或热成像
  4. 相机系统:与不同的多波段相机系统配准
  5. 适用任务:图像融合、目标检测、图像识别

9.2 相关链接

10. INO Dataset

10.1 数据集简介

  1. 数据集内容:包含多对在不同天气条件下捕获的场景视频。视频包括可见光和红外视频。
  2. 场景视频列表:Crossroads、Trees and runnerVisitor parkingMain entranceParking eveningClose personCoat depositMultiple depositBackyard runner Group fightParking snowHighway ILobbyCampusHighway III

10.2 相关链接

11. MSRS Dataset

11.1 数据集简介

  1. 数据集类型:多通道图像数据集
  2. 构建基础:基于MFNet数据集
  3. 数据集规模:715对白天图像对、729对夜间图像对、总计1,444对高质量的对齐红外和可见光图像

图9:MSRS Dataset 示例图

11.2 相关链接

12. LSOTB-TIR Dataset

12.1 数据集简介

  1. 数据集类型:热红外目标跟踪数据集
  2. 图像序列数量:总共包含1,416个热红外(TIR)图像序列
  3. 总帧数:超过64.3万帧图像
  4. 注释信息:所有序列中每一帧的对象都进行了边界框注释、总共生成了超过77万个边界框

图10:LSOTB-TIR 示例图

12.2 相关链接

13. MFNet(multispectral semantic segementation dataset)

13.1 数据集简介

  1. 数据集类型:RGB-热成像数据集,多通道
  2. 主要任务:语义分割
  3. 数据集构建:MFNet数据集构建了一个新的多光谱数据集,用于红外和可见光图像融合
  4. 图像对数量:包含1,569对图像,820对在白天拍摄、749对在夜间拍摄
  5. 空间分辨率:480×640像素
  6. 图像对齐情况:MFNet数据集中有许多图像对没有对齐
  7. 图像质量:大多数红外图像信噪比低,红外图像对比度低

图11:multispectral semantic segementation dataset 示例图

13.2 相关链接

14. SIRST(Single-frame InfraRed Small Target (SIRST) Benchmark)

14.1 数据集简介

  1. 数据集类型:公开的单帧数据集
  2. 图像选择:从数百个序列中抽取最具代表性的图片。每个红外序列中只选取一幅代表图像。
  3. 标注形式:图像目标有5种标注形式,适应不同检测模型。
  4. 支持任务:图像分类、实例分割、边界框回归、语义分割、实例点识别
  5. 图像和目标数量:427张红外图像、480个目标
  6. 数据集划分:50% 训练集、20% 验证集、30% 测试集
  7. 目标特点:许多目标非常模糊、隐藏在复杂的背景中

图12:SIRST Dataset 示例图

14.2 相关链接

15. SIRST-AUG Dataset

15.1 数据集简介

  1. 数据集名称:红外小目标检测数据集(ISTDD)
  2. 图像特点:包含对地面、空中和云层的广泛干扰
  3. 输入图像尺寸:数据集和网络的输入固定大小调整为256×256像素
  4. 训练集处理:将512×512像素的调整大小的图像裁剪成256×256像素的目标区域,基于原始比例进行裁剪,每个目标确保位于角落和中心,获得五个裁剪后的图像,每个裁剪后的图像随机旋转0°、45°、90°、135°和180°,角度在一定范围内随机波动,模拟真实且多变的场景
  5. 图像数量:

训练集:8525张图像

测试集:545张图像

图13:ISTDD Dataset 示例图

15.2 相关链接

数据集提取码为:ojd4

16. MDvsFA-cGAN

16.1 数据集简介

16.1.1 真实红外图像数据集

  1. 数据集名称:AllSeqs、Single
  2. 数据集特点:包含小目标的红外图像
  3. AllSeqs数据集:包含11个真实红外序列、总共有2098帧
  4. Single数据集:包含100个具有不同小目标的真实单个红外图像

16.1.2 合成红外图像生成

  1. 目的:扩充数据集
  2. 合成图像来源:从互联网上收集的高分辨率自然场景红外图像
  3. 背景生成:从收集的红外图像中裁剪出不同区域形成背景
  4. 小目标合成:将真实红外图像中分离出来的小目标对象叠加在背景上、使用二维高斯函数合成的小目标对象叠加在背景上

16.1.3 数据集类别,分辨率,视频帧数量信息

  1. Cannonball: 352×288, 30 frames; Car: 344×256, 116 frames; Plane: 320×240, 298 frames; Bird: 640×480, 232 frames; Cat: 216×256, 292 frames; Rockets: 320×240, 242 frames; Drone: 384×288, 396 frames; Target1: 480×360, 361 frames; Target2: 256×200, 30 frames; Target3: 352×240, 50 frames; Target4: 384×288, 51 frames; Single-frame: Min:173×98, Max:407×305, 100 images set.

图14:MDvsFA-cGAN Dataset 示例图

16.2 相关链接

17. IRSTD-1k Dataset

17.1 数据集简介

  1. 适用任务:目标检测、图像分割
  2. 数据集特点:针对“弱”与“小”目标的检测和分割,“弱”:信噪比低、与背景对比度差、红外辐射强度弱,“小”:目标像素少,难以获得纹理信息
  3. 数据集内容:提供1,000个真实图像,包含各种目标形状、不同大小和丰富杂波背景,具有精确的像素级注释
  4. 数据集结构:分为两个文件夹。IRSTD1k_Img:存放真实图像,IRSTD1k_Label:存放标签mask
  5. 图像尺寸:512×512像素
  6. 目标类型:包含多种不同类型的小目标,如:无人机、生物、船只、车辆
  7. 背景包括:海洋、河流、田野、山区、城市、含有大量杂波和噪声的云层

图15:IRSTD-1k Dataset 示例图

17.2 相关链接

18. OTCBVS Dataset

OTCBVS Dataset数据集简介

共包含包含14个子数据集,进行分别介绍

18.1 OSU Thermal Pedestrian Database

18.1.1 数据集简介

  1. 数据集来源:俄亥俄州立大学校园内的人行横道
  2. 序列数量:10个独立序列
  3. 总图像数量:284张图像
  4. 图像格式:8位灰度位图
  5. 图像尺寸:360 × 240像素
  6. 采样率:非均匀,小于30Hz
  7. 真实标注数据:围绕人物的边界框列表,边界框具有大致相同的纵横比,只选择了至少50%可见在图像中的人物,高度遮挡的人物未被选择

图16:OSU Thermal Pedestrian Database 示例图

18.2 IRIS Thermal/Visible Face Database

18.2.1 数据集简介

  1. 研究主题:在可变的光照、表情和姿势下同时获取的未配准的热成像和可见光面部图像。
  2. 总大小为1.83 GB
  3. 图像尺寸:320 × 240像素(可见光和热成像)
  4. 4228对人眼和热成像图像对
  5. 每人176-250张图像,每种表情和每种照明条件下11张图像(每个表情和照明条件下的不同姿势)30名个体 - 表情、姿势和照明
  6. 表情:ex1、ex2、ex3 - 惊讶、大笑、生气(变化的姿势)
  7. 照明:Lon(左侧灯亮)、Ron(右侧灯亮)、2on(两侧灯都亮)、dark(暗室)、off(左右两侧灯都关)、变化的姿势

18.3 OSU Color-Thermal Database

18.3.1 数据集简介

  1. 研究主题:颜色和热成像图像的融合,基于融合的颜色和热成像图像的对象检测
  2. 采集地点:俄亥俄州立大学校园内繁忙的人行道交叉口
  3. 颜色/热成像序列数量:6(每个位置3个)
  4. 总图像数量:17089
  5. 图像格式:热成像:8位灰度位图,彩色:24位彩色位图
  6. 图像尺寸:320 × 240像素
  7. 采样率:大约30Hz
  8. 图像配准:使用手动选择的点通过单应性将彩色/热成像图像配准

图17:OSU Color-Thermal Database 示例图

18.4 Terravic Facial IR Database

18.4.1 数据集简介

  1. 研究主题:面部分析:使用热成像技术进行面部特征的分析。
  2. 热序列数量:20个不同的热成像序列。
  3. 变化情况:包含不同的面部朝向(正面、左侧、右侧)和环境条件(室内/室外),以及不同的装饰(戴眼镜、戴帽子)。
  4. 图像格式:8位灰度JPEG,适用于热成像数据的存储和展示。
  5. 图像尺寸:320 × 240像素,提供足够的分辨率以进行面部特征分析。

图18:Terravic Facial IR Database 示例图

18.5 Terravic Motion IR Database

18.5.1 数据集简介

  1. 研究主题:检测和跟踪:利用热成像技术进行目标的检测与跟踪。
  2. 热序列数量:共18个不同的热成像序列。
  3. 场景分类:
  4. 室外运动和跟踪场景:11个序列。

室外房屋监控:1个序列。

室内走廊运动:1个序列。

飞机运动和跟踪:1个序列。

水下和近水面运动:2个序列。

平静背景运动:2个序列。

  1. 图像格式:8位灰度JPEG,适合热成像数据的存储和展示。
  2. 图像尺寸:320 × 240像素,提供足够的分辨率以进行目标检测和跟踪。

图19:Terravic Motion IR Database 示例图

18.6 Terravic Weapon IR Database

18.6.1 数据集简介

  1. 研究主题:

武器存在检测:利用热成像技术检测隐藏或可见的武器。

武器发射检测:使用热成像技术检测和分析武器发射时产生的热信号。

  1. 热序列数量:共5个不同的热成像序列。

武器存在检测场景:1个序列。

武器发射检测场景:4个序列。

  1. 图像格式:8位灰度JPEG,适合热成像数据的存储和展示。
  2. 图像尺寸:320 × 240像素,提供足够的分辨率以进行目标检测和分析。

图20:Terravic Weapon IR Database 示例图

18.7 CBSR NIR Face Dataset

18.7.1 数据集简介

  1. 研究主题:

近红外面部检测:使用近红外技术进行面部的定位和检测。

近红外眼部检测:在近红外图像中进行眼部的定位和检测。

近红外面部识别:基于近红外图像的面部识别技术。

  1. 图像数量:共197人的3940张近红外面部图像。
  2. 图像尺寸:480×640像素,8位,未压缩。
  3. 图像集合:图像被分为两个集合:

画廊集合:每人有8张图像。

探针集合:每人有12张图像。

  1. 图像信息:提供了包括图像编号、人员编号和眼睛坐标的详细信息。

图21:CBSR NIR Face Dataset 示例图

18.8 Audio-Visual Vehicle (AVV) Dataset

18.8.1 数据集简介

  1. 非红外光数据集

18.9 CSIR-CSIO Moving Object Thermal Infrared Imagery Dataset (MOTIID)

18.9.1 数据集简介

  1. 研究主题:移动物体检测:在热红外图像中检测包括行人、车辆等在内的移动目标
  2. 热序列数量:共18个热成像视频序列
  3. 移动目标类型:

两种不同的四轮车:大使牌和Innova牌

一辆三轮车:自动人力车

一辆两轮车:摩托车

人类行人:在不同距离行走

遛狗

飞翔的鸟

  1. 图像尺寸:640 × 480像素,提供清晰的热成像分辨率
  2. 采样率:10Hz,即每秒钟捕获10帧图像
  3. 视频序列时长:每个热视频序列的持续时间在4-22秒之间变化
  4. 目标行为:每个热视频序列包含一个或多个移动目标进入和退出摄像机视野

图22:MOTIID 示例图

18.10 Pedestrian Infrared/visible Stereo Video Dataset

18.10.1 数据集简介

  1. 研究主题:立体视频分析:在红外和可见光立体视频中对近距离行人进行空间定位和特征提取。
  2. 视频对数量:共四个红外-可见光视频对。
  3. 帧数范围:每个视频对的帧数在100到4400帧之间,提供不同长度的视频序列。
  4. 分辨率:视频的分辨率为480 × 360像素,适合立体视觉分析。
  5. 注释信息:

206帧进行了视差注释,为立体匹配和深度估计提供了基准。

25819对真值点,用于评估算法性能和精度。

  1. 前景信息:提供了前景信息,有助于目标检测和分割。
  2. 演员数量:所有视频包含1到5位演员走动。
  3. 遮挡情况:视频中的演员存在相互遮挡的情况,增加了行人检测和跟踪的难度。

图23:Pedestrian Infrared/visible Stereo Video Dataset 示例图

18.11 Thermal Infrared Video Benchmark for Visual Analysis

18.11.1 数据集简介

  1. 研究主题:目标检测、计数和跟踪:在红外视频中进行单视图和多视图的目标检测、计数和跟踪。
  2. 基准测试规模:包括超过60,000帧。
  3. 视觉任务类型:

跟踪低分辨率下单个行人:帧尺寸1024×640。

跟踪低分辨率下的单个飞行蝙蝠:帧尺寸1024×512。

跟踪多个对象(行人、汽车、自行车、摩托车):帧尺寸1024×512。

跟踪多个飞行蝙蝠:帧尺寸1024×1024。

从多个视图跟踪多人的平面运动:帧尺寸512×512。

从三个视图以3D方式跟踪多个飞行蝙蝠:帧尺寸640×512。

在高密度下计算飞行蝙蝠的数量:帧尺寸640×512和1024×1024。

图24:Thermal Infrared Video Benchmark for Visual Analysis 示例图

18.12 Maritime Imagery in the Visible and Infrared Spectrums

18.12.1 数据集简介

研究主题

  1. VAIS数据集:用于船舶目标分类的热成像和可见光图像数据集。
  2. 总红外图像数量:1242张。
  3. 总可见光图像数量:1623张。
  4. 总图像数量:2865张。
  5. 总图像对数量:1088对(同时获取但未进行配准的热成像和可见光图像对)。
  6. 独特船只数量:264艘。
  7. 夜间红外图像数量:154张。
  8. 基础类别数量:6个。
  9. 细粒度类别数量:15个。

图25:Maritime Imagery in the Visible and Infrared Spectrums 示例图

18.13 ContactDB: Analyzing and Predicting Grasp Contact via Thermal Imaging

18.13.1 数据集简介

  1. 研究主题:手-物体接触:研究在抓取家用物品过程中手与物体的接触方式。
  2. 视频内容:人类参与者抓取家用物品的RGB-D-热成像扫描视频。
  3. 纹理对象网格:每个扫描视频有对应的有纹理的对象网格。
  4. 纹理表示:纹理表示接触点,有助于分析接触区域。
  5. 接触揭示方式:手-物体接触通过热成像相机揭示,因为抓取过程中手向物体传递热量。
  6. 参与者数量:50名参与者。
  7. 抓取对象数量:

48个以“传递”意图抓取的对象。

27个以“使用”意图抓取的对象。

  1. 图像尺寸:

RGB-D图像:960×540像素。

热成像图像:640×512像素。

图26:ContactDB: Analyzing and Predicting Grasp Contact via Thermal Imaging 示例图

18.14 DIAST Variability Illuminated Thermal and Visible Ear Image Dataset

18.14.1 数据集简介

  1. 研究主题:耳朵识别:利用热成像和可见光图像进行耳朵的识别研究。
  2. 图像融合:研究如何融合热成像和可见光图像以提高识别效果。
  3. 受试者数量:55名受试者的侧面轮廓耳朵图像。
  4. 图像类型:包括可见光和热成像的灰度图像。
  5. 照明条件:在5种不同的照明条件下拍摄图像,照明范围在1勒克斯到10700勒克斯之间。
  6. 图像拍摄次数:对于每只耳朵的每种照明条件,都拍摄了两次图像。

右耳:10张可见光图像和10张热成像图像。

左耳:10张可见光图像和10张热成像图像。

  1. 图像配对:每张可见光图像都有相应的热成像图像,并已手动配准。
  2. 图像分辨率:所有图像(可见光和热成像)的分辨率均为125×125像素。
  3. 图像总量:

1100张可见光图像(左耳550张,右耳550张)。

1100张热成像图像(左耳550张,右耳550张)。

总计2200张图像。

18.15 相关链接

19.BU-TIV (Thermal Infrared Video)

19.1 数据集简介

  1. 研究主题:目标检测、计数、跟踪:专注于红外视频中的单视图和多视图目标检测、计数和跟踪。
  2. 基准测试规模:超过60,000帧的视频数据。
  3. 相机校准文件:提供用于多视图几何分析的相机校准文件。
  4. 视觉任务类型:

低分辨率下的单个行人跟踪:帧尺寸1024×640。

低分辨率下的单个蝙蝠跟踪:帧尺寸1024×512。

多目标跟踪(行人、汽车、自行车、摩托车):帧尺寸1024×512。

多目标蝙蝠跟踪:帧尺寸1024×1024。

多视角下的多个行人跟踪(具有平面运动):帧尺寸512×512。

从三个视角进行的3D多蝙蝠跟踪:帧尺寸640×512。

高密度下的蝙蝠计数:帧尺寸640×512 和 1024×1024。

图27 BU-TIV Dataset 示例图

19.2 相关链接

其他相关数据集

### MFIRST 和 SIRST 红外数据集概述 MFIRST (Mid-Wave Infrared Scene Project) 是一个用于模拟和分析中波红外场景的数据集[^1]。该数据集包含了多种环境条件下的红外图像,旨在支持目标检测、识别以及跟踪算法的研究和发展。 SIRST (Shortwave InfraRed Search and Track) 数据集则专注于短波红外光谱范围内的成像技术研究[^2]。此集合提供了不同天气状况下获取的目标物体热辐射特性信息,对于开发先进的光电对抗措施具有重要意义。 #### 下载指南 为了获得这些宝贵资源,研究人员通常需要访问特定机构或组织提供的官方平台来完成注册并遵循其发布的下载流程说明文档。部分公开可用链接可能存在于学术论文附录或是相关会议网站上。 #### 使用方法简介 当处理来自上述两个源的文件时,建议采用如下方式: - **预处理阶段**:确保所有必要的依赖库已安装完毕;读取原始二进制格式或其他编码形式存储的数据; ```python import numpy as np from scipy.io import loadmat data = loadmat('path_to_file.mat') image_data = data['variable_name'] ``` - **可视化操作**:利用matplotlib等工具包展示单帧或多帧序列中的关键特征 ```python import matplotlib.pyplot as plt plt.imshow(image_data, cmap='gray', vmin=0, vmax=255) plt.colorbar() plt.show() ``` - **后续分析工作**:基于具体应用场景设计相应的机器学习模型架构来进行训练测试评估等活动
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张飞飞飞飞飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值