Pytorch学习-引言

Pytorch相关链接

Pytorch官方网站

https://pytorch.org/

Pytorch的Github仓库

https://github.com/pytorch/pytorch

Pytorch论坛

https://discuss.pytorch.org/

Pytorch离线下载包链接

https://download.pytorch.org/whl/torch_stable.html

Pytorch学习视频推荐链接

http://【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】 https://www.bilibili.com/video/BV1hE411t7RN/?share_source=copy_web&vd_source=2b85bd9be9213709642d908906c3d863

http://【《PyTorch深度学习实践》完结合集】 https://www.bilibili.com/video/BV1Y7411d7Ys/?share_source=copy_web&vd_source=2b85bd9be9213709642d908906c3d863

Pytorch介绍

PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理等应用。它由Facebook的人工智能研究团队开发,并得到了许多研究机构和企业的支持。PyTorch以其易用性、灵活性和高效性而受到研究人员和开发者的青睐。

以下是PyTorch的一些关键特点:

  • 动态计算图(Dynamic Computation Graph):也称为自动微分系统,它允许用户在运行时修改图形,并且可以按需进行更改。这使得模型的原型设计和调试更加直观和灵活。

  • 强大的GPU加速:PyTorch提供了对NVIDIA CUDA的支持,使得在GPU上进行张量计算和神经网络训练更加高效。

  • 丰富的API:PyTorch提供了大量的预定义层、优化器和损失函数,这些都是深度学习研究和开发中常用的组件。

  • 序列化和模型共享:PyTorch可以轻松地保存和加载模型,这对于模型的共享和部署至关重要。

  • 与Python紧密集成:PyTorch可以无缝地与Python的其他科学计算库(如NumPy)一起使用,并且可以利用Python的丰富生态系统。

  • 社区支持:由于其开源特性,PyTorch拥有一个活跃的社区,用户可以从中获得大量的教程、工具和预训练模型。

  • 跨平台:PyTorch可以在多种操作系统上运行,包括Windows、Linux和macOS。

  • 适用于研究和生产:PyTorch既适合于快速实验和研究,也适用于工业级的生产环境。

  • 模型构建的灵活性:用户可以自由地定义新的神经网络架构,而不必受限于预设的网络结构。

  • 广泛的应用:PyTorch被用于各种深度学习任务,包括图像和视频分析、语音处理、自然语言处理等。

Pytorch安装

Pytorch 的安装可以直接参考官网

根据提示选择即可

推荐使用Conda安装

安装成功后,用以下命令验证torch是否可用

import torch
print(torch.cuda.is_available())

返回True就是可用,否则为不可用

Pytorch中的Tensors张量可以代替Numpy库,张量能够应用到GPU上,进而加快计算速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张飞飞飞飞飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值