P4009 汽车加油行驶问题

本文介绍了一种使用Dijkstra算法解决最短路径问题的方法,通过C++实现了一个分层图的SPFA(Shortest Path Faster Algorithm)算法。代码中涉及到了邻接表、队列数据结构,并根据输入的矩阵和参数动态构建图,最后找到从起点到所有点的最短路径。该算法在有负权边的情况下也能有效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

题目

思路

按题意分层图就完了
code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int head[101*101*101+101*101+10001],d[101*101*101+101*101+10001],n,m,a,bb,c,k,tot=1;
queue<int> q;
struct f{
    int to,next,w;
} b[101*101*11*50];
bool book;
void add(int x,int y,int z)
{
    b[tot].to=y;
    b[tot].w=z;
    b[tot].next=head[x];
    head[x]=tot;
    tot++;
}
bool vis[101*101*101+101*101+10001];
void spfa(int x)
{
    q.push(x);
    for (int i=1;i<=n*n*n+n*n+k;i++)
    {
    	d[i]=2000*1000+20;
    	vis[i]=0;
	}
	vis[x]=1;
	d[x]=0;
    while (q.size())
    {
    	int xx=q.front();
    	q.pop();
    	vis[xx]=0;
    	for (int i=head[xx];i;i=b[i].next)
    	{
    		if (d[b[i].to]>d[xx]+b[i].w)
    		{
    			d[b[i].to]=d[xx]+b[i].w;
    			if (vis[b[i].to]==0)
    			{
	    			vis[b[i].to]=1;
    				q.push(b[i].to);
				}
			}
		}
	}
	return;
}
int main()
{
	cin>>n>>k>>a>>bb>>c;
	for (int i=1;i<=n;i++) for (int j=1;j<=n;j++)
	{
		cin>>book;
		for (int kk=0;kk<=k;kk++)
		{
			if (i+1<=n)
			{
				if (!book)
				{
					if (kk!=0) add(i*n*n+j*n+kk,i*n*n+n*n+j*n+kk-1,0);
					add(i*n*n+j*n+kk,i*n*n+n*n+j*n+k-1,a+c);
				}
				else add(i*n*n+j*n+kk,i*n*n+n*n+j*n+k-1,a);
			}
			if (j+1<=n)
			{
				if (!book)
				{
					if (kk!=0) add(i*n*n+j*n+kk,i*n*n+n+j*n+kk-1,0);
					add(i*n*n+j*n+kk,i*n*n+n+j*n+k-1,a+c);
				}
				else add(i*n*n+j*n+kk,i*n*n+n+j*n+k-1,a);
			}
			if (i-1!=0)
			{
				if (!book)
				{
					if (kk!=0) add(i*n*n+j*n+kk,i*n*n-n*n+j*n+kk-1,bb);
					add(i*n*n+j*n+kk,i*n*n-n*n+j*n+k-1,bb+a+c);
				}
				else add(i*n*n+j*n+kk,i*n*n-n*n+j*n+k-1,bb+a);
			}
			if (j-1!=0)
			{
				if (!book)
				{
					if (kk!=0) add(i*n*n+j*n+kk,i*n*n-n+j*n+kk-1,bb);
					add(i*n*n+j*n+kk,i*n*n-n+j*n+k-1,bb+a+c);
				}
				else add(i*n*n+j*n+kk,i*n*n-n+j*n+k-1,bb+a);
			}
		}
	}
	spfa(n*n+n+k);
	int mx=0x7fffffff;
	for (int kk=0;kk<=k;kk++) mx=min(mx,d[n*n*n+n*n+kk]);
	cout<<mx;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值