飞桨百度架构师手把手带你零基础实践深度学习——手写数字识别优化算法

本文介绍了在手写数字识别任务中,如何通过调整学习率和应用不同的优化算法来提升模型性能。从初始的SGD算法开始,讨论了学习率对损失函数收敛速度的影响,并探讨了动量(Momentum)、AdaGrad和Adam等主流优化算法的工作原理及其优势。这些优化技巧有助于模型更快地找到最优解并提高识别准确性。
摘要由CSDN通过智能技术生成

在这里插入图片描述将损失函数由均方误差改交叉熵,我们下面来寻找更好的改进方法。

调整学习率

当前SGD算法,LR=0.01,10轮后Loss=0.55。
学习率(步长)过大过小都会有影响。

  • 学习率越小,损失函数的变化速度越慢,意味着我们需要花费更长的时间进行收敛。
  • 学习率越大,只根据总样本集中的一个批次计算梯度,抽样误差会导致计算出的梯度不是全局最优的方向,且存在波动。在接近最优解时,过大的学习率会导致参数在最优解附近震荡,损失难以收敛。
    在这里插入图片描述

在训练前,我们往往不清楚一个特定问题设置成怎样的学习率是合理的,因此在训练时可以尝试调小或调大,通过观察Loss下降的情况判断合理的学习率。

在加载数据后,循环前,设定学习率。

optimizer = fluid.optimizer.SGDOptimizer(learning_r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值