Jupyter Notebook 是什么?安装与入门教学

123 篇文章 1 订阅
33 篇文章 1 订阅

前言

Jupyter Notebook 简介:一个交互式的科学计算平台

什么是Jupyter Notebook?

Jupyter Notebook 是一个开源的网页应用,它允许用户创建和分享包含实时代码、数学方程、可视化和解释性文本的文档。

【----帮助大家学习,以下所有学习资料文末免费领!----】

交互式计算:为何这么重要?

这个平台适合做实验、数据分析,而且还支持多种编程语言,例如Python、R 和Julia。

为什么选择Jupyter Notebook:特点与用途

功能丰富的界面

介绍Jupyter Notebook 的使用者界面和各种可用的工具。

实用性与应用场景

从数据清洗到机器学习,Jupyter Notebook 在数据科学的全流程中都发挥着重要作用。

Jupyter Notebook 安装与使用的详细教学

系统要求

为了安装Jupyter Notebook,你需要先确保你的系统已经安装了Python。建议安装Python 3.x 版本。如果你的系统还没有Python,可以到Python 官方网站下载并安装。

安装步骤

使用pip 安装

  1. 打开你的命令提示符或终端机。
  2. 输入以下命令来安装Jupyter Notebook:
pip install notebook
  1. 这会启动Jupyter Notebook 并在你的网页浏览器中打开一个新的标签。

基本操作教学

创建新的Notebook

  1. 在Jupyter 的首页上,点击右上角的“New”。
  2. 在下拉选单中选择你想使用的编程语言(通常是Python 3)。

储存与读取Notebook

  • 储存:你可以点击工具列上的储存图示,或者使用Ctrl+S来储存你的Notebook。
  • 读取:从Jupyter 的首页,浏览到你存放Notebook 的目录,点击即可开启。

执行代码和Markdown 单元

  • 代码单元:输入你的代码,然后使用Shift+Enter执行。
  • Markdown 单元:选择单元格类型为Markdown,然后输入你的文本或者Markdown 语法,使用Shift+Enter渲染。

用Jupyter Notebook 中分析资料

Jupyter Notebook 不仅仅是一个程式码编辑器,它也是一个强大的数据分析工具。在这节中,我们将简单介绍如何在Jupyter Notebook 中进行基本的资料分析。

准备工作:汇入必要的套件

在任何数据分析任务开始前,第一步通常是汇入必要的Python 套件。以下是一些常用的数据分析相关套件:

import pandas as pdimport numpy as npimport matplotlib.pyplot as plt
  1. Pandas:用于数据处理和分析。
  2. NumPy:用于处理大型多维阵列和矩阵的数学计算。
  3. Matplotlib:用于绘制图表和视觉化。

载入资料

假设我们有一个CSV 档案名为data.csv,我们可以用以下指令将其读入一个Pandas DataFrame。

df = pd.read_csv('data.csv')

查看资料的前几行:

df.head()

基本资料探索

在载入资料后,我们可以执行一些基本的统计操作来了解资料的概况。

描述性统计

df.describe()

资料类型和空值数量

df.info()

资料视觉化

使用Matplotlib 或其他视觉化套件绘制基本图表。

绘制柱状图

df['column_name'].value_counts().plot(kind='bar')plt.show()

绘制散点图

plt.scatter(df['column1'], df['column2'])plt.show()

进行数据分析

根据实际需求,运用Pandas 或其他套件进行资料处理和分析。例如:

  • 筛选条件:df[df[‘column’] > value]
  • 资料整理:df.dropna(),df.fillna(value)
  • 聚合运算:df.groupby(‘column’).mean()

透过这些简单的步骤和范例,您可以在Jupyter Notebook 中快速进行资料分析。这些只是入门级的操作,但它们提供了一个很好的开始,助您更深入地探究数据。

Jupyter Notebook 高级功能和插件

一旦您熟悉了Jupyter Notebook 的基本操作,接下来就是探索它更高级的功能和插件。这些高级特性可以大大提升您的产能和数据分析能力。

常用的Jupyter 插件

Jupyter 插件或扩充功能能够增强Notebook 的各种功能,包括但不限于代码折叠、目录生成、高亮显示等。

Nbextensions:提供了许多用户界面扩充功能。

  • 安装指令
pip install jupyter_contrib_nbextensionsjupyter contrib nbextension install --user

  • 使用: 打开Jupyter Notebook,然后在Nbextensions 标签页选择您想要启用的扩展。

Hinterland:代码自动完成功能。

  • 安装指令
pip install jupyter_nbextensions_configuratorjupyter nbextensions_configurator enable --user

Jupyter Widgets

这些是用于创建互动式UI 控件的小工具,如滑块、下拉菜单等。

  • 安装指令
pip install ipywidgetsjupyter nbextension enable --py widgetsnbextension

使用范例

from ipywidgets import interactdef f(x):    return xinteract(f, x=10)

高级视觉化技巧

您可以使用诸如Matplotlib 和Seaborn 等工具进行更高级的资料视觉化。

Matplotlib

  • 3D 绘图
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = fig.add_subplot(111, projection='3d')

Seaborn

  • 热图(Heatmap)
import seaborn as snssns.heatmap(df.corr())

如何在Jupyter Notebook 中使用Matplotlib 和Seaborn

在Jupyter Notebook 的每个单元格中,您只需要正常地使用这些函数和方法。记住在第一个单元格中加入%matplotlib inline以内嵌绘图。

小结

Jupyter Notebook 是一个强大而灵活的工具,适用于多种数据分析和机器学习任务。从基础安装和操作到高级功能和插件,我们已经探讨了如何最大限度地利用这一平台。使用这些高级功能和插件,您不仅可以提高分析速度,还可以实现更复杂的数据视觉化。当你掌握了这些基本和高级功能后,你会发现Jupyter Notebook 是一个不可或缺的数据分析工具。

-END-


Python入门教程

如果大家对python感兴趣,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交流。

① Python所有方向的学习路线图,清楚各个方向要学什么东西

② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析

③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论

④ 20款主流手游迫解 爬虫手游逆行迫解教程包

爬虫与反爬虫攻防教程包,含15个大型网站迫解

爬虫APP逆向实战教程包,含45项绝密技术详解

⑦ 超300本Python电子好书,从入门到高阶应有尽有

⑧ 华为出品独家Python漫画教程,手机也能学习

⑨ 历年互联网企业Python面试真题,复习时非常方便

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者

点此链接】领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值