前言
Jupyter Notebook 简介:一个交互式的科学计算平台
什么是Jupyter Notebook?
Jupyter Notebook 是一个开源的网页应用,它允许用户创建和分享包含实时代码、数学方程、可视化和解释性文本的文档。
【----帮助大家学习,以下所有学习资料文末免费领!----】
交互式计算:为何这么重要?
这个平台适合做实验、数据分析,而且还支持多种编程语言,例如Python、R 和Julia。
为什么选择Jupyter Notebook:特点与用途
功能丰富的界面
介绍Jupyter Notebook 的使用者界面和各种可用的工具。
实用性与应用场景
从数据清洗到机器学习,Jupyter Notebook 在数据科学的全流程中都发挥着重要作用。
Jupyter Notebook 安装与使用的详细教学
系统要求
为了安装Jupyter Notebook,你需要先确保你的系统已经安装了Python。建议安装Python 3.x 版本。如果你的系统还没有Python,可以到Python 官方网站下载并安装。
安装步骤
使用pip 安装
- 打开你的命令提示符或终端机。
- 输入以下命令来安装Jupyter Notebook:
pip install notebook
- 这会启动Jupyter Notebook 并在你的网页浏览器中打开一个新的标签。
基本操作教学
创建新的Notebook
- 在Jupyter 的首页上,点击右上角的“New”。
- 在下拉选单中选择你想使用的编程语言(通常是Python 3)。
储存与读取Notebook
- 储存:你可以点击工具列上的储存图示,或者使用Ctrl+S来储存你的Notebook。
- 读取:从Jupyter 的首页,浏览到你存放Notebook 的目录,点击即可开启。
执行代码和Markdown 单元
- 代码单元:输入你的代码,然后使用Shift+Enter执行。
- Markdown 单元:选择单元格类型为Markdown,然后输入你的文本或者Markdown 语法,使用Shift+Enter渲染。
用Jupyter Notebook 中分析资料
Jupyter Notebook 不仅仅是一个程式码编辑器,它也是一个强大的数据分析工具。在这节中,我们将简单介绍如何在Jupyter Notebook 中进行基本的资料分析。
准备工作:汇入必要的套件
在任何数据分析任务开始前,第一步通常是汇入必要的Python 套件。以下是一些常用的数据分析相关套件:
import pandas as pdimport numpy as npimport matplotlib.pyplot as plt
- Pandas:用于数据处理和分析。
- NumPy:用于处理大型多维阵列和矩阵的数学计算。
- Matplotlib:用于绘制图表和视觉化。
载入资料
假设我们有一个CSV 档案名为data.csv,我们可以用以下指令将其读入一个Pandas DataFrame。
df = pd.read_csv('data.csv')
查看资料的前几行:
df.head()
基本资料探索
在载入资料后,我们可以执行一些基本的统计操作来了解资料的概况。
描述性统计
df.describe()
资料类型和空值数量
df.info()
资料视觉化
使用Matplotlib 或其他视觉化套件绘制基本图表。
绘制柱状图
df['column_name'].value_counts().plot(kind='bar')plt.show()
绘制散点图
plt.scatter(df['column1'], df['column2'])plt.show()
进行数据分析
根据实际需求,运用Pandas 或其他套件进行资料处理和分析。例如:
- 筛选条件:df[df[‘column’] > value]
- 资料整理:df.dropna(),df.fillna(value)
- 聚合运算:df.groupby(‘column’).mean()
透过这些简单的步骤和范例,您可以在Jupyter Notebook 中快速进行资料分析。这些只是入门级的操作,但它们提供了一个很好的开始,助您更深入地探究数据。
Jupyter Notebook 高级功能和插件
一旦您熟悉了Jupyter Notebook 的基本操作,接下来就是探索它更高级的功能和插件。这些高级特性可以大大提升您的产能和数据分析能力。
常用的Jupyter 插件
Jupyter 插件或扩充功能能够增强Notebook 的各种功能,包括但不限于代码折叠、目录生成、高亮显示等。
Nbextensions:提供了许多用户界面扩充功能。
- 安装指令:
pip install jupyter_contrib_nbextensionsjupyter contrib nbextension install --user
- 使用: 打开Jupyter Notebook,然后在Nbextensions 标签页选择您想要启用的扩展。
Hinterland:代码自动完成功能。
- 安装指令:
pip install jupyter_nbextensions_configuratorjupyter nbextensions_configurator enable --user
Jupyter Widgets
这些是用于创建互动式UI 控件的小工具,如滑块、下拉菜单等。
- 安装指令:
pip install ipywidgetsjupyter nbextension enable --py widgetsnbextension
使用范例:
from ipywidgets import interactdef f(x): return xinteract(f, x=10)
高级视觉化技巧
您可以使用诸如Matplotlib 和Seaborn 等工具进行更高级的资料视觉化。
Matplotlib
- 3D 绘图:
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = fig.add_subplot(111, projection='3d')
Seaborn
- 热图(Heatmap):
import seaborn as snssns.heatmap(df.corr())
如何在Jupyter Notebook 中使用Matplotlib 和Seaborn
在Jupyter Notebook 的每个单元格中,您只需要正常地使用这些函数和方法。记住在第一个单元格中加入%matplotlib inline以内嵌绘图。
小结
Jupyter Notebook 是一个强大而灵活的工具,适用于多种数据分析和机器学习任务。从基础安装和操作到高级功能和插件,我们已经探讨了如何最大限度地利用这一平台。使用这些高级功能和插件,您不仅可以提高分析速度,还可以实现更复杂的数据视觉化。当你掌握了这些基本和高级功能后,你会发现Jupyter Notebook 是一个不可或缺的数据分析工具。
-END-
Python入门教程
如果大家对python感兴趣,下面我会给大家免费分享一份Python全套学习资料, 包含视频、源码、课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,可以和我一起来学习交流。
① Python所有方向的学习路线图,清楚各个方向要学什么东西
② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
④ 20款主流手游迫解 爬虫手游逆行迫解教程包
⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
⑦ 超300本Python电子好书,从入门到高阶应有尽有
⑧ 华为出品独家Python漫画教程,手机也能学习
⑨ 历年互联网企业Python面试真题,复习时非常方便
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉100道Python练习题👈
检查学习结果。
👉面试刷题👈
资料领取
上述这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以微信扫描下方二维码输入“领取资料” 即可自动领取
或者
【点此链接】领取