这是本文的目录
前言
众所周知现在不管是在圈里还是圈外,只要说到做数据分析、机器学习甚至人工智能,好像已经言必称Python
什么是深度学习
深度学习是机器学习与神经网络、人工智能、图形化建模、优化、模式识别和信号处理等技术融合后产生的一个领域。在严谨的学术期刊中,这个新兴学科的模型一直受严肃理智的学者所推崇:
"深度学习网络是神经网络革命性的发展,人们甚至认为可以用它来创建更强大的预测模型。”
python有什么优点呢:
第一、开发效率高:Python具有非常强大的第三方库,在此基础上进行开发,很大程度上提高开发效率;
第二、面向对象:python的编程思想更符合人类的思维逻辑,不需要像C语言那样去理解计算机的运行思维;
第三、免费、开源:可以自由阅读源代码并进行改动,实现想要的功能,并且网络上有已经很多Python的学习资源;
第四、可移植性:可以在很多平台上无缝连接,包括 Linux 、Windows、FreeBSD、Solaris 等等;
第五、可扩展性:如果想让一段代码运行的更快,可以选择C语言或者C++来编写,然后在Python中直接使用;
第六、简单易学:相对于java等,语法更简单,更易上手,适用于编程初学者。
第七、简单、免费、兼容性、面向对象、丰富的库、规范的代码、可扩展性和可嵌入性。
为什么深度学习都在用python
1、做深度学习,最重要的是验证想法,需要在短期内跑出多次实验结果。其中的难点在于快速出结果,静态语言固然省内存,性能好,但修改起来确实不如python容易,毕竟python上手门槛很低,十行顶“百行”。
2、python的深度学习框架多且维护频繁,方便我们快速入手。大部分深度学习框架对于CPU密集型的功能都做了优化,python的深度学习框架可以看做是各种API的接口而已,真正用起来不见得会慢的让人难以忍受。况且在性能没有落下很多的情况下,python根本不需要考虑垃圾回收,内存泄露的情况。
3、python是胶水语言可以结合C++,使得写出来的代码可以达到C++的效率。
4、一项人工智能的工程可能涉及到多个环节,而如果选择使用Python,它可以给你提供一条龙服务。
如何学习大模型 AI
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
大模型 AI 能干什么?
大模型是怎样获得「智能」的?
用好 AI 的核心心法
大模型应用业务架构
大模型应用技术架构
代码示例:向 GPT-3.5 灌入新知识
提示工程的意义和核心思想
Prompt 典型构成
指令调优方法论
思维链和思维树
Prompt 攻击和防范
…
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
为什么要做 RAG
搭建一个简单的 ChatPDF
检索的基础概念
什么是向量表示(Embeddings)
向量数据库与向量检索
基于向量检索的 RAG
搭建 RAG 系统的扩展知识
混合检索与 RAG-Fusion 简介
向量模型本地部署
…
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
为什么要做 RAG
什么是模型
什么是模型训练
求解器 & 损失函数简介
小实验2:手写一个简单的神经网络并训练它
什么是训练/预训练/微调/轻量化微调
Transformer结构简介
轻量化微调
实验数据集的构建
…
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
硬件选型
带你了解全球大模型
使用国产大模型服务
搭建 OpenAI 代理
热身:基于阿里云 PAI 部署 Stable Diffusion
在本地计算机运行大模型
大模型的私有化部署
基于 vLLM 部署大模型
案例:如何优雅地在阿里云私有部署开源大模型
部署一套开源 LLM 项目
内容安全
互联网信息服务算法备案
…
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
资料领取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】