一文读懂Transformer:从原理到实践,揭开大模型的核心奥秘

官宣!起源于剑桥大学和微软研究院的AI量化社区,正式对外开放!

两个月关注破万!LLMQuant知识分享社群,新人大促!

福利|全球征集! All in AI+Quant! LLMQuant助力案例探索与项目落地!

过去几年中,人工智能(AI)的进步令人瞩目,从ChatGPT、Bard到Midjourney、Stable Diffusion,这些应用以惊人的语言理解与生成、图像创作和跨模态能力颠覆了人们对AI的想象。这些出色表现背后有一位默默耕耘的「幕后英雄」——Transformer架构。自2017年谷歌团队提出Transformer后,它迅速成为自然语言处理(NLP)和多模态AI模型的基石。理解Transformer的内部工作原理,有助于我们看清AI应用的本质和未来潜力。

本文将从基础概念、模型流程、关键模块、训练机制与实际应用场景五个方面,为你详细揭开Transformer的神秘面纱。

一、Transformer的诞生与意义

在Transformer出现之前,RNN(循环神经网络)和CNN(卷积神经网络)在NLP任务中表现一般。RNN擅长处理序列数据,但训练效率较低且难以捕捉长距离依赖信息;CNN虽适合图像处理,却不能很好适应变长输入的文本数据。为解决这些难题,谷歌团队在2017年的论文《Attention Is All You Need》中提出Transformer,核心创新在于「注意力机制(Attention)」代替序列依赖,从而实现并行计算、充分提取上下文联系。

Transformer的意义在于,它让大规模预训练成为可能。由于不再严格依赖序列计算,模型可以高效地处理海量文本数据,从中自动学习语义、句法和世界知识。这为后来的GPT系列、大型多模态模型奠定了基础。

二、Transformer整体流程:从输入到输出

让我们先从宏观层面看看Transformer处理一段文本的过程:

    1. 分词(Tokenization)
      将输入文本拆分为大量「标记」(token)。这些token可能是完整词语,也可能是子词片段、标点符号或字符子集。Token通常基于BPE(Byte-Pair Encoding)或SentencePiece等算法生成,以在字词级和字符级之间取得平衡,使模型能处理未知词汇和不同语言。
    1. 词嵌入(Embedding)与位置编码(Positional Encoding)
      每个token被映射为一个高维向量(如数千维)。这些向量在语义空间中具有一定结构,相似含义的词嵌入彼此接近。此外,Transformer本身对词序没有内在理解,因此需要加入位置编码(Positional Encoding)向量,使模型能够区分「猫坐在桌上」与「桌子坐在猫上」的差别。位置编码通常采用正弦和余弦函数,以在任意序列长度下保有位置信息。
    1. 多头注意力(Multi-Head Attention)
      输入序列的嵌入向量进入关键模块——注意力层。
  • • 在注意力中,每个token都会生成「查询(Query)」、「键(Key)」和「值(Value)」三个向量。

  • • 对于序列中的任意两个token,查询向量与键向量的点积决定了它们之间的相关性权重。这个权重用于加权值向量,从而在上下文中动态聚合信息。

  • • 多头注意力意味着不止一套Q、K、V映射,每个头专注于不同的语义或语法特征。例如,一个注意力头或许侧重动词与主语的关系,另一个头可能侧重地名与国家的关联。

    1. 前馈网络(Feed-Forward Network,FFN)
      在注意力层之后,每个token的向量再通过一层非线性前馈网络处理。
  • • FFN对每个token独立处理,将其映射到更高维空间再映射回来,有点像对向量进行一系列特定问题的问答。

  • • FFN帮助模型提取更抽象、更高级的特征。当注意力用于信息融合时,FFN则在融合后的表示上加强非线性变换,提升模型表示能力。

    1. 层堆叠(Stacking Layers)
      Transformer通常由N层相同结构(多头注意力 + FFN + 残差连接与归一化)叠加而成。数据通过多轮交互不断丰富其表示。规模越大、层数越多,模型捕捉复杂语义的能力越强。
    1. 输出层与概率分布(Softmax)
      在处理完成后,模型需要预测下一个词的概率分布。通过一组映射回词表的权重矩阵(unembedding matrix)和Softmax函数,将高维向量映射到词汇表中每个token的概率上。Softmax确保所有概率和为1,高值对应高概率单词。通过多次迭代预测与抽样,模型即可生成连贯自然的文本。

三、Attention机制的内核详解

注意力机制是Transformer的灵魂所在。它不再依赖序列顺序,而是让模型在任意时刻参考上下文中所有位置的词语。

主要分为以下几个方面

  • • 点积注意力:Q与K的点积决定相关性,输出是对V的加权平均。

  • • 多头注意力:将Q、K、V向量分拆为多份,每份独立执行注意力计算,再将结果拼接回去。这样模型可同时从多个「视角」理解文本。

  • • 掩码(Masking):在语言模型训练中,预测下一个词时,需要屏蔽未来词语的信息以防作弊。这通过在注意力权重中给未来token赋零权重实现。

四、训练与预训练:为什么Transformer能如此「聪明」?

Transformer的强大来自于预训练阶段,它在海量文本上学习语言统计规律、语法结构和概念关联。

  • • 无监督预训练:在无标签的数据中预测下一个词是天然任务,不需昂贵的人工标注。模型在大规模语料上训练,有效地「阅读」了互联网上数以百亿计的句子。

  • • 微调(Fine-Tuning):在预训练基础上,通过少量有监督数据微调模型,可适应特定任务(如问答、翻译、摘要)。

  • • 指令微调与RLHF(基于人类反馈的强化学习):如ChatGPT背后使用RLHF,让模型更符合人类期望,与用户更自然交互。

五、应用与前景:从文本到多模态

Transformer不止于NLP,它已被扩展到图像、音频乃至多模态领域。

案例

  • • 文本到图像生成(如Midjourney、Stable Diffusion):将文本描述嵌入成向量,再使用Transformer引导扩散模型生成对应的图像。

  • • 语音合成与语音识别:将音频分片作为输入token,并通过注意力机制在时间维度捕捉声学特征。

  • • 跨模态搜索与问答:将图像和文本统一映射到多模态空间中,让模型「看图说话」成为现实。

随着计算资源与优化算法的进步,Transformer及其变体将持续扩张规模并融入更多数据类型,朝着通用人工智能(AGI)的愿景前进。

总结

Transformer是一座桥梁,从传统的序列模型迈向并行、高效的注意力机制,为大型预训练模型的诞生铺平道路。在Transformer的支持下,大模型在语言、图像和多模态任务上不断突破,令AI从「模仿工具」进化为具备语义理解与创造力的智能体。

理解Transformer,你将更深刻地领会ChatGPT、Bard、Midjourney等应用背后的原理:它们的神奇源于对语言和数据模式的深度捕捉,以及在广阔数据中历练而来的智慧。

在这场AI技术迭代中,Transformer的影响才刚刚开始。当你再次与AI聊天、让AI创作图像,或让其理解多模态信息,不妨记住,其背后正有Transformer在默默驱动着这一切。


零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值