- 博客(20)
- 收藏
- 关注
原创 深度学习训练与验证集首个迭代步很慢,其余训练步骤速度没问题
找了很多方法均未得到解决,最后发现外接固态千万注意是不是插在usb2.0的接口,换为3.0会有较大速度提升。
2024-03-18 10:29:32 439 1
原创 pytorch中使用LSTM对非时序图片分类
采用LSTM对图片分类的模型在pytorch中很常见,但网上大多数代码存在一些问题,给初学者的我带来了一定的困扰。因此有了本篇博客。
2024-02-02 16:23:39 684
原创 #卷积的输出张量计算
根据给定的张量形状为【112,112,3】,卷积核大小为8*8,步长为8,卷积核个数为768,可以计算输出形状。对于张量的宽度,卷积操作将在每个位置上滑动8个像素,即 (112-8)/8+1=14。输出大小H,W = (输入大小 - 卷积核大小) / 步长 + 1。同样地,对于张量的高度,输出大小也是14,8个像素一次的步幅。卷积核的个数为768,表示输出通道数,即输出的深度。综上,根据卷积操作的参数,输出形状为【14,14,768】。1. 首先,计算每个维度的输出大小。2. 通道数 = 卷积核的个数。
2024-02-02 10:26:22 512
原创 MATLAB中利用PAA (piecwise aggregate approximation)算法将时序特征序列映射为长度为224的短序列
在尽可能多地保留特征信息的同时减少计算量和内存消耗。代码注释详细,且已经封装为函数,可以直接调用,故不多做解释。
2024-01-25 15:16:54 520
原创 时序数据转二维图像(MATLAB)
在深度学习的无损检测中,常常需要区分正常域与缺陷域,然而直接通过某帧的温度图查看会损失大量的时序数据。常用方法为偏度解决。但偏度图存高度压缩,损失了部分信息。因此,可以将时序数据转为二维图像,然后对二维图像进行分类用以识别当前像素点是否存在缺陷。
2024-01-15 22:29:39 2633 1
转载 yolov8和yolov5对比
都是基于 DarkNet-53 模型的现代目标检测器,它们都具有一些共同的特性,如使用锚框来提升检测准确性以及非极大值抑制(NMS)技术来减少误检。然而,两者在这些特性方面的实现有所不同,这影响了它们的性能和应用场景。综上所述,如果您的目标是进行实时的小物体检测,YOLOv5 将是一个不错的选择。而对于需要高准确率的检测任务,YOLOv8 会提供更高的性能。
2024-01-14 16:22:32 8466 3
原创 涡流热成像相比与其余无损检测方法的优点
传统超声检测技术需要在超声激励装置和检测对象之间涂抹耦合剂,才能有效的将超声波导入检测材料中,超声检测效果受耦合质量影响较大;且检测形式为点检测形式。:但渗透检测效果受检测对象表面粗糙度的影响较大,粗糙度过高容易产生假象;由于渗透检测需要对检测对象表面进行清理,并且检测时毛细渗透时间较长;检测评估需要靠T人的经验,检测时工人劳动强度大,不适用于大型罐体的大面积详查。:但漏磁检测设备重量相对较大,在壁厚较大的区域检测精度较低;:受照射角度影响较大,不能对垂直照射方向的薄层缺陷进行检测。
2024-01-11 21:00:29 472 1
转载 碳钢的导热系数
碳钢是一种含碳量小于2.11%的铁碳合金,其中碳含量在0.008%至2.11%之间。碳钢具有良好的可加工性、韧性和强度,是制造许多机器零件和工业设备的常见材料。在使用碳钢时,了解其导热系数是非常重要的。碳钢的导热系数与其化学成分、晶体结构、硬度、温度和其他因素有关。下面将就不同牌号碳钢的导热系数进行对比。
2023-12-08 20:44:56 2169
原创 Matlab(不常见的绘图)
通常从仿真软件中导出的数据txt格式,而且按照【X,Y,Z,t1时刻温度1,t2时刻温度....】,而这样的数据直接绘图,只能绘制离散点图。能够发现的是,由于网格加密部分比较密集,很难观察细节,为此,需要形成面。对于一些统计量常用的频数图,总是容易忘,写下来备忘。,1.5为插值步长,有一定可能会影响精度。3)为了导出沿时间方向温度的频数数据。
2023-12-07 15:09:15 411
原创 Comsol with Matlab
Comsol完成后处理可视化的确方便,但是需要提取多个模型,重复同样的建立面,提取面的数据,就很机械。这不符合“懒”人的做事风格。故采用matlab可以轻松愉快的完成机械操作,不必像流水线工人,重复创建。
2023-12-05 20:47:10 1786
原创 Comsol事件控制线圈加热冷却(涡流热成像)
在涡流加热过程中,通常需要关注的不仅是加热过程,还有加热物体的冷却过程。这非常重要。Xiao XT【】中用试验方法说明了对于缺陷的深度的定量分析,加热与冷却过程的频域图(幅度与相位)十分重要。
2023-12-05 15:29:07 1796
原创 傅里叶变换应用的例子
其中位置信息对应时序数据中的时间信息,图像矩阵中的每个值的大小对应时序数据中的函数值的大小。你有一个最高频率f = 32kHz的模拟信号,采样频率 64kHz,对这个信号做一个16个点的FFT分析,采样点下标 n 的范围是0, 1, 2, 3, …傅里叶变换就是将复杂时序函数的变为多个简单的Asin(ωx+φ),(A为幅值,ω为频率,φ为相位)通俗易懂的话就是把复杂的化为简单。图1为红外相机记录的温度与时间的数据,图2为未增加频域精度的振幅与频率图,图3为增加了频域精度的振幅与频率图。
2023-12-04 16:11:33 2598
原创 步进式热成像/长脉冲热成像
步进加热热成像(SHT):对象比PT加热时间更长,达到更深的缺陷[1]。步进加热/长脉冲热成像(SH或ST/LP)[14]:输入脉冲的持续时间比PT长,以允许输入热激发到达更深的缺陷。与PT不同的是,在SH/LP中,缺陷比周围环境更热/更冷,并且与声区交换热量的速率不同。在缺陷检测中具有较高的识别率[2].3. 参考文献。
2023-12-04 09:39:28 377
原创 深度学习图像分割方法U-Net改进之Attention U-Net
注意力机制是一种基于权重的模型,其作用是让深度学习模型能够更加集中地关注当前输入数据中最具有代表性和区分性的部分,从而提高模型的分类精度和泛化性能。注意力机制在深度学习中广泛应用于自然语言处理、计算机视觉等领域。例如,在自然语言处理任务中,如机器翻译或文本摘要任务中,注意力机制可以帮助模型专注于输入序列中与预测结果最相关的内容,从而提高模型的翻译或摘要质量。再比如,在图像问答(QA)任务中,注意力机制可以对原始图像像素进行加权,以聚焦于图像中最相关的区域,从而对图片问题作出正确回答。
2023-06-10 16:45:32 4938 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人