什么是神经网络?神经网络开发框架——PyTorch和架构Transformer的区别和联系

PyTorch就是工具,而Transformer就是理论;而理论指导工具。

我们都知道大模型的本质是一个神经网络模型,因此我们学习大模型就是在学习神经网络模型;但了解了很多关于神经网络的理论,但大部分人对神经网络都没有一个清晰的认识,也就是说神经网络到底是什么?它长什么样?

事实上所谓的神经网络本质上就是一个数学模型,里面涉及大量的数学运算;只不过其运算的主要数据类型是——向量,具体表现为多维矩阵。

PyTorch和Transformer

在神经网络的学习研究过程中,有两个东西是绕不过去的;一个是PyTorch神经网络开发框架,另一个就是Transformer神经网络架构。它们两者之间的关系就类似于编程语言和算法之间的关系,PyTorch就是编程语言;而Transformer就是算法。

Transformer即可以通过PyTorch框架实现,也可以通过其它框架实现,比如Tensorflow;PyTorch也可以实现其它的网络架构模型,比如CNN和RNN等。

因此,PyTorch也被称为科学计算框架,原因就在于神经网络的本质就是数学模型,而数学模型就是不停地做科学计算。

如下就是一个简单的使用PyTorch实现的简单神经网络模型,从代码中可以看出,一个神经网络主要由两部分组成,init初始化方法和forward前向传播方法。

import torch``import torch.nn as nn``   ``# 定义简单的神经网络架构``class SimpleNeuralNetwork(nn.Module):`    `def __init__(self):`        `super(SimpleNeuralNetwork, self).__init__()`        `self.layer1 = nn.Linear(10, 5)  # 输入层10维,输出5维`        `self.layer2 = nn.Linear(5, 2)   # 隐藏层5维,输出2维``   `    `def forward(self, x):`        `x = torch.relu(self.layer1(x))  # 使用ReLU激活函数`        `x = self.layer2(x)              # 输出层不需要激活函数`        `return x``   ``# 创建模型实例并输出网络结构``model = SimpleNeuralNetwork()``print(model)``   

在init方法中主要用来初始化一些参数,以及神经网络的网络层;比如Linear就是一个线性神经网络层——也叫做全连接层。

而forward方法就用来做一些科学计算,也就是神经网络模型中的传播算法等。比如上面代码中,就是对目标数据x先使用layer1网络层做一次线性变换,然后再使用relu函数进行激活。之后在使用layer2线性网络做一次线性变换,最终返回变换之后x的值。

在神经网络中,除了输入层与输出层之外;任何一层网络的输入都来自上层网络的输出;而任何一层网络的输出就是下层网络的输入。

所以,神经网络的核心就是:“将现实问题转化为数学问题,通过求解数学问题,从而解决现实问题”。

但是,为什么多维矩阵在经过多层神经网络的多次变换之后,就能够“理解”自然语言,“看懂”图片和视频;这个就是Transformer等神经网络架构需要解决的问题了。

从外面来看,神经网络就是一个黑盒,我们输入一些数据,然后神经网络这个黑盒就能根据某种规则给我们生成一些新的数据;但我们并不知道神经网络中到底发生了什么。

但把这个黑盒打开之后就可以看到,Transformer这个黑盒是由Encoder-Decoder编码器和解码器组成的;而编码器和解码器又由更小的组件组成——比如多头注意力,残差层等组成。

如上图所示就是Transformer论文提供的经典架构图;详细说明了Transformer的编码器和解码器是怎么构成的。

因此,PyTorch和Transformer的关系就是工具和理论的关系;没了工具就无法制造出神经网络,而没有理论神经网络就无法解决实际问题;这里PyTorch就是制造神经网络的工具;而Transformer就是让神经网络能够正常运行的理论。

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值