前言
随着通用大模型技术的快速发展,其在传统行业的推进却相对缓慢。企业在应用大模型时,需综合考虑专业性、数据安全、持续迭代及综合成本等多方面因素。腾讯集团因此提出了重点发展行业大模型的理念。本文基于一线实践反馈,系统归纳总结了行业大模型的发展情况,旨在厘清关键争议与困惑。真正解决用户需求、贴近场景与数据的企业,将引领大模型的未来。
行业大模型:技术与需求的桥梁
大模型引发智能革命
2022年,OpenAI发布的大语言模型ChatGPT迅速走红,标志着AI大模型时代的到来,预示着AI向通用人工智能(AGI)迈进的新阶段。大模型的核心优势在于其参数规模大、泛化能力强及支持多模态处理,这使得AI能够执行多种任务,展现出类人的通用智能能力。
行业大模型填补需求缺口
通用大模型在专业性、泛化性和经济性上常面临“不可能三角”的挑战。专业性要求模型针对特定领域进行深度训练,而泛化性则强调模型对新任务的适应能力。经济性则关乎模型的开发与应用成本。行业大模型以其高性价比、可专业定制及数据安全可控等优势,成为弥合技术与行业需求差距的关键。通过低成本再训练或精调,行业大模型能在较小参数规模下达到良好性能,满足企业的实际需求。
行业大模型的基础与构建
基础与路径
行业大模型大多在通用大模型基础上构建,利用通用大模型丰富的知识和泛化能力,结合行业特定数据和任务进行训练或优化。这种构建方式不仅节省了从头训练模型所需的大量数据和算力资源,还提升了行业大模型的开发效率和应用效果。
定制化服务
行业大模型不仅是产品和工具,更是针对企业特定需求的定制化解决方案。厂商提供的初始模型往往是“毛坯房”,企业需根据自身业务、数据和流程进行“装修”,以实现最佳应用效果。这种定制化服务确保了行业大模型能够精准满足企业的实际需求。
行业大模型的应用进展与评估
应用阶段划分
从技术发展和市场渗透两个维度来看,行业大模型的应用主要集中在探索孵化期和试验加速期。农业、能源等行业尚处于探索阶段,而教育、金融、游戏与出行等行业已进入试验加速期,成功案例不断涌现。广告与软件行业则已步入采纳成长期,大模型在文案生成、数据分析等方面得到广泛应用。
应用场景分析
行业大模型的应用场景广泛覆盖研发设计、生产制造、市场销售、客户服务及经营管理等环节。数字原生行业因其高数字化水平和强技术接受能力成为先行者;生产性服务业则因强数据处理需求而推进较快;重资产行业虽推进较慢,但正逐步将大模型与行业知识深度结合。
评估标准
衡量行业大模型成功与否的关键在于避免两个误区并评估三类价值。避免将技术指标视为唯一标准,而应关注业务指标的提升;同时避免过度看重短期收益而忽视长期投入。评估价值应包括降本提效、业务创新及体验增强等方面。
行业大模型技术的优化策略
提示工程
通过设计针对性的提示词引导大模型输出特定结果,是优化大模型应用的基本方法。这种方法上手简单且效果显著,尤其适用于企业初步探索大模型应用的场景。
检索增强生成
检索增强生成(RAG)通过外挂知识库为模型提供特定领域数据输入,提升模型在专业领域的准确性和实用性。这种方法适用于数据资源丰富且需要保障数据安全的企业。
精调
精调是在预训练好的大模型基础上,通过特定数据集调整模型参数以适应特定业务场景。这种方法适用于对模型性能有较高要求的应用场景,能有效提升模型在理解行业知识和执行任务方面的能力。
预训练
当其他方法无法满足需求时,可考虑从头预训练一个专为特定行业定制的大模型。这种方法投入成本较高且风险较大,但潜在回报同样可观。随着技术进步和成本降低,预训练行业大模型的应用可能会逐渐增加。
通过以上优化策略的综合运用,企业可以更加灵活地应对不同场景下的需求挑战,推动行业大模型技术的深入应用与发展。
零基础入门AI大模型
今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴,可以点击下方链接免费领取【保证100%免费
】
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
5.免费获取
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】